Problem
Given an integer array arr
, return the length of a maximum size turbulent subarray of arr
.
A subarray is turbulent if the comparison sign flips between each adjacent pair of elements in the subarray.
More formally, a subarray [arr[i], arr[i + 1], ..., arr[j]]
of arr
is said to be turbulent if and only if:
For i <= k < j
:
arr[k] > arr[k + 1]
whenk
is odd, andarr[k] < arr[k + 1]
whenk
is even.Or, for
i <= k < j
:arr[k] > arr[k + 1]
whenk
is even, andarr[k] < arr[k + 1]
whenk
is odd.
Example 1:
Input: arr = [9,4,2,10,7,8,8,1,9]
Output: 5
Explanation: arr[1] > arr[2] < arr[3] > arr[4] < arr[5]
Example 2:
Input: arr = [4,8,12,16]
Output: 2
Example 3:
Input: arr = [100]
Output: 1
Constraints:
1 <= arr.length <= 4 * 10^4
0 <= arr[i] <= 10^9
Solution (Java)
class Solution {
public int maxTurbulenceSize(int[] arr) {
int n = arr.length;
int ans = 1;
int l;
int r;
if (n == 1) {
return 1;
}
if (n == 2) {
return arr[0] == arr[1] ? 1 : 2;
}
for (l = 0, r = 1; r < n - 1; r++) {
int difL = arr[r] - arr[r - 1];
int difR = arr[r] - arr[r + 1];
if (difL == 0 && difR == 0) {
l = r + 1;
} else if (difL == 0) {
ans = Math.max(ans, r - l);
l = r;
} else if (!((difL < 0 && difR < 0) || (difL > 0 && difR > 0))) {
ans = Math.max(ans, r - l + 1);
l = r;
}
}
return Math.max(ans, r - l + 1);
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).