Problem
Given a 0-indexed integer array nums
, find a **0-indexed **integer array answer
where:
answer.length == nums.length
.answer[i] = |leftSum[i] - rightSum[i]|
.
Where:
leftSum[i]
is the sum of elements to the left of the indexi
in the arraynums
. If there is no such element,leftSum[i] = 0
.rightSum[i]
is the sum of elements to the right of the indexi
in the arraynums
. If there is no such element,rightSum[i] = 0
.
Return the array answer
.
Example 1:
Input: nums = [10,4,8,3]
Output: [15,1,11,22]
Explanation: The array leftSum is [0,10,14,22] and the array rightSum is [15,11,3,0].
The array answer is [|0 - 15|,|10 - 11|,|14 - 3|,|22 - 0|] = [15,1,11,22].
Example 2:
Input: nums = [1]
Output: [0]
Explanation: The array leftSum is [0] and the array rightSum is [0].
The array answer is [|0 - 0|] = [0].
Constraints:
1 <= nums.length <= 1000
1 <= nums[i] <= 105
Solution (Java)
class Solution {
public int[] leftRightDifference(int[] nums) {
if(nums != null && nums.length > 0) {
int n = nums.length;
int[] lsum = new int[n];
int[] rsum = new int[n];
for(int i = 1, j = n-2; i<n; i++,j--) {
lsum[i] += lsum[i-1] + nums[i-1];
rsum[j] += rsum[j+1] + nums[j+1];
}
for(int i =0;i<n;i++) {
nums[i] = Math.abs(lsum[i] - rsum[i]);
}
}
return nums;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).