Problem
You are given a 0-indexed array nums
of length n
.
The distinct difference array of nums
is an array diff
of length n
such that diff[i]
is equal to the number of distinct elements in the suffix nums[i + 1, ..., n - 1]
subtracted from the number of distinct elements in the prefix nums[0, ..., i]
.
Return **the *distinct difference* array of **nums
.
Note that nums[i, ..., j]
denotes the subarray of nums
starting at index i
and ending at index j
inclusive. Particularly, if i > j
then nums[i, ..., j]
denotes an empty subarray.
Example 1:
Input: nums = [1,2,3,4,5]
Output: [-3,-1,1,3,5]
Explanation: For index i = 0, there is 1 element in the prefix and 4 distinct elements in the suffix. Thus, diff[0] = 1 - 4 = -3.
For index i = 1, there are 2 distinct elements in the prefix and 3 distinct elements in the suffix. Thus, diff[1] = 2 - 3 = -1.
For index i = 2, there are 3 distinct elements in the prefix and 2 distinct elements in the suffix. Thus, diff[2] = 3 - 2 = 1.
For index i = 3, there are 4 distinct elements in the prefix and 1 distinct element in the suffix. Thus, diff[3] = 4 - 1 = 3.
For index i = 4, there are 5 distinct elements in the prefix and no elements in the suffix. Thus, diff[4] = 5 - 0 = 5.
Example 2:
Input: nums = [3,2,3,4,2]
Output: [-2,-1,0,2,3]
Explanation: For index i = 0, there is 1 element in the prefix and 3 distinct elements in the suffix. Thus, diff[0] = 1 - 3 = -2.
For index i = 1, there are 2 distinct elements in the prefix and 3 distinct elements in the suffix. Thus, diff[1] = 2 - 3 = -1.
For index i = 2, there are 2 distinct elements in the prefix and 2 distinct elements in the suffix. Thus, diff[2] = 2 - 2 = 0.
For index i = 3, there are 3 distinct elements in the prefix and 1 distinct element in the suffix. Thus, diff[3] = 3 - 1 = 2.
For index i = 4, there are 3 distinct elements in the prefix and no elements in the suffix. Thus, diff[4] = 3 - 0 = 3.
Constraints:
1 <= n == nums.length <= 50
1 <= nums[i] <= 50
Solution (Java)
class Solution {
public int[] distinctDifferenceArray(int[] nums) {
int diff[] = new int[nums.length];
for(int i = 0; i < nums.length; i++) {
Set<Integer> prefixSet = new HashSet();
Set<Integer> suffixSet = new HashSet();
for(int j = 0; j < nums.length; j++) {
if(j <= i) {
prefixSet.add(nums[j]);
}
if(j > i) {
suffixSet.add(nums[j]);
}
}
diff[i] = prefixSet.size() - suffixSet.size();
}
return diff;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).