2040. Kth Smallest Product of Two Sorted Arrays

Difficulty:
Related Topics:
Similar Questions:

Problem

Given two sorted 0-indexed integer arrays nums1 and nums2 as well as an integer k, return **the *kth* (1-based) smallest product of nums1[i] * nums2[j] where 0 <= i < nums1.length and **0 <= j < nums2.length.   *Example 1:*

Input: nums1 = [2,5], nums2 = [3,4], k = 2
Output: 8
Explanation: The 2 smallest products are:
- nums1[0] * nums2[0] = 2 * 3 = 6
- nums1[0] * nums2[1] = 2 * 4 = 8
The 2nd smallest product is 8.

Example 2:

Input: nums1 = [-4,-2,0,3], nums2 = [2,4], k = 6
Output: 0
Explanation: The 6 smallest products are:
- nums1[0] * nums2[1] = (-4) * 4 = -16
- nums1[0] * nums2[0] = (-4) * 2 = -8
- nums1[1] * nums2[1] = (-2) * 4 = -8
- nums1[1] * nums2[0] = (-2) * 2 = -4
- nums1[2] * nums2[0] = 0 * 2 = 0
- nums1[2] * nums2[1] = 0 * 4 = 0
The 6th smallest product is 0.

Example 3:

Input: nums1 = [-2,-1,0,1,2], nums2 = [-3,-1,2,4,5], k = 3
Output: -6
Explanation: The 3 smallest products are:
- nums1[0] * nums2[4] = (-2) * 5 = -10
- nums1[0] * nums2[3] = (-2) * 4 = -8
- nums1[4] * nums2[0] = 2 * (-3) = -6
The 3rd smallest product is -6.

  Constraints:

Solution

class Solution {
    static long inf = (long) 1e10;

    public long kthSmallestProduct(int[] nums1, int[] nums2, long k) {
        int n = nums2.length;
        long lo = -inf - 1;
        long hi = inf + 1;
        while (lo < hi) {
            long mid = lo + ((hi - lo) >> 1);
            long cnt = 0;
            for (int i : nums1) {
                int l = 0;
                int r = n - 1;
                int p = 0;
                if (0 <= i) {
                    while (l <= r) {
                        int c = l + ((r - l) >> 1);
                        long mul = i * (long) nums2[c];
                        if (mul <= mid) {
                            p = c + 1;
                            l = c + 1;
                        } else {
                            r = c - 1;
                        }
                    }
                } else {
                    while (l <= r) {
                        int c = l + ((r - l) >> 1);
                        long mul = i * (long) nums2[c];
                        if (mul <= mid) {
                            p = n - c;
                            r = c - 1;
                        } else {
                            l = c + 1;
                        }
                    }
                }
                cnt += p;
            }
            if (cnt >= k) {
                hi = mid;
            } else {
                lo = mid + 1L;
            }
        }
        return lo;
    }
}

Explain:

nope.

Complexity: