373. Find K Pairs with Smallest Sums

Difficulty:
Related Topics:
Similar Questions:

Problem

You are given two integer arrays nums1 and nums2 sorted in ascending order and an integer k.

Define a pair (u, v) which consists of one element from the first array and one element from the second array.

Return the k pairs (u1, v1), (u2, v2), ..., (uk, vk) with the smallest sums.

  Example 1:

Input: nums1 = [1,7,11], nums2 = [2,4,6], k = 3
Output: [[1,2],[1,4],[1,6]]
Explanation: The first 3 pairs are returned from the sequence: [1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]

Example 2:

Input: nums1 = [1,1,2], nums2 = [1,2,3], k = 2
Output: [[1,1],[1,1]]
Explanation: The first 2 pairs are returned from the sequence: [1,1],[1,1],[1,2],[2,1],[1,2],[2,2],[1,3],[1,3],[2,3]

Example 3:

Input: nums1 = [1,2], nums2 = [3], k = 3
Output: [[1,3],[2,3]]
Explanation: All possible pairs are returned from the sequence: [1,3],[2,3]

  Constraints:

Solution

class Solution {
    private static class Node {
        long sum;
        List<Integer> al;
        int index;

        Node(int index, int num1, int num2) {
            this.sum = (long) num1 + (long) num2;
            this.al = new ArrayList<>();
            this.al.add(num1);
            this.al.add(num2);
            this.index = index;
        }
    }

    public List<List<Integer>> kSmallestPairs(int[] nums1, int[] nums2, int k) {
        PriorityQueue<Node> queue = new PriorityQueue<>((a, b) -> a.sum < b.sum ? -1 : 1);
        List<List<Integer>> res = new ArrayList<>();
        for (int i = 0; i < nums1.length && i < k; i++) {
            queue.add(new Node(0, nums1[i], nums2[0]));
        }
        for (int i = 1; i <= k && !queue.isEmpty(); i++) {
            Node cur = queue.poll();
            res.add(cur.al);
            int next = cur.index;
            int lastNum1 = cur.al.get(0);
            if (next + 1 < nums2.length) {
                queue.add(new Node(next + 1, lastNum1, nums2[next + 1]));
            }
        }
        return res;
    }
}

Explain:

nope.

Complexity: