Problem
Given a positive integer n
, you can apply one of the following operations:
If
n
is even, replacen
withn / 2
.If
n
is odd, replacen
with eithern + 1
orn - 1
.
Return the minimum number of operations needed for n
to become 1
.
Example 1:
Input: n = 8
Output: 3
Explanation: 8 -> 4 -> 2 -> 1
Example 2:
Input: n = 7
Output: 4
Explanation: 7 -> 8 -> 4 -> 2 -> 1
or 7 -> 6 -> 3 -> 2 -> 1
Example 3:
Input: n = 4
Output: 2
Constraints:
1 <= n <= 2^31 - 1
Solution
class Solution {
public int integerReplacement(int n) {
Map<Integer, Integer> dp = new HashMap<>();
return solve(n, dp);
}
private int solve(int n, Map<Integer, Integer> dp) {
if (n == 1) {
return 0;
}
if (dp.containsKey(n)) {
return dp.get(n);
}
int ans;
if (n % 2 == 0) {
ans = 1 + solve(n >>> 1, dp);
} else {
ans = 1 + Math.min(solve(n + 1, dp), solve(n - 1, dp));
}
dp.put(n, ans);
return ans;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).