Problem
Implement a last-in-first-out (LIFO) stack using only two queues. The implemented stack should support all the functions of a normal stack (push
, top
, pop
, and empty
).
Implement the MyStack
class:
void push(int x)
Pushes element x to the top of the stack.int pop()
Removes the element on the top of the stack and returns it.int top()
Returns the element on the top of the stack.boolean empty()
Returnstrue
if the stack is empty,false
otherwise.
Notes:
You must use only standard operations of a queue, which means that only
push to back
,peek/pop from front
,size
andis empty
operations are valid.Depending on your language, the queue may not be supported natively. You may simulate a queue using a list or deque (double-ended queue) as long as you use only a queue's standard operations.
Example 1:
Input
["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]
Output
[null, null, null, 2, 2, false]
Explanation
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // return 2
myStack.pop(); // return 2
myStack.empty(); // return False
Constraints:
1 <= x <= 9
At most
100
calls will be made topush
,pop
,top
, andempty
.All the calls to
pop
andtop
are valid.
Follow-up: Can you implement the stack using only one queue?
Solution
class MyStack {
private Queue<Integer> queueOne;
private Queue<Integer> queueTwo;
private int top;
// Initialize your data structure here.
public MyStack() {
queueOne = new LinkedList<>();
queueTwo = new LinkedList<>();
top = 0;
}
// Push element x onto stack.
public void push(int x) {
queueOne.add(x);
top = x;
}
// Removes the element on top of the stack and returns that element.
public int pop() {
while (queueOne.size() > 1) {
int val = queueOne.remove();
top = val;
queueTwo.add(val);
}
int popValue = queueOne.remove();
queueOne.addAll(queueTwo);
queueTwo.clear();
return popValue;
}
// Get the top element.
public int top() {
return top;
}
// Returns whether the stack is empty.
public boolean empty() {
return queueOne.isEmpty();
}
}
/**
* Your MyStack object will be instantiated and called as such:
* MyStack obj = new MyStack();
* obj.push(x);
* int param_2 = obj.pop();
* int param_3 = obj.top();
* boolean param_4 = obj.empty();
*/
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).