2709. Greatest Common Divisor Traversal

Difficulty:
Related Topics:
Similar Questions:

Problem

You are given a 0-indexed integer array nums, and you are allowed to traverse between its indices. You can traverse between index i and index j, i != j, if and only if gcd(nums[i], nums[j]) > 1, where gcd is the greatest common divisor.

Your task is to determine if for every pair of indices i and j in nums, where i < j, there exists a sequence of traversals that can take us from i to j.

Return true** if it is possible to traverse between all such pairs of indices,**** or false otherwise.**

Example 1:

Input: nums = [2,3,6]
Output: true
Explanation: In this example, there are 3 possible pairs of indices: (0, 1), (0, 2), and (1, 2).
To go from index 0 to index 1, we can use the sequence of traversals 0 -> 2 -> 1, where we move from index 0 to index 2 because gcd(nums[0], nums[2]) = gcd(2, 6) = 2 > 1, and then move from index 2 to index 1 because gcd(nums[2], nums[1]) = gcd(6, 3) = 3 > 1.
To go from index 0 to index 2, we can just go directly because gcd(nums[0], nums[2]) = gcd(2, 6) = 2 > 1. Likewise, to go from index 1 to index 2, we can just go directly because gcd(nums[1], nums[2]) = gcd(3, 6) = 3 > 1.

Example 2:

Input: nums = [3,9,5]
Output: false
Explanation: No sequence of traversals can take us from index 0 to index 2 in this example. So, we return false.

Example 3:

Input: nums = [4,3,12,8]
Output: true
Explanation: There are 6 possible pairs of indices to traverse between: (0, 1), (0, 2), (0, 3), (1, 2), (1, 3), and (2, 3). A valid sequence of traversals exists for each pair, so we return true.

Constraints:

Solution (Java)

class Solution {
    private int getf(int[] f, int x) {
        return f[x] == x ? x : (f[x] = getf(f, f[x]));
    }

    private void merge(int[] f, int[] num, int x, int y) {
        x = getf(f, x);
        y = getf(f, y);
        if (x == y) {
            return;
        }
        if (num[x] < num[y]) {
            int t = x;
            x = y;
            y = t;
        }
        f[y] = x;
        num[x] += num[y];
    }

    public boolean canTraverseAllPairs(int[] nums) {
        final int n = nums.length;
        if (n == 1) {
            return true;
        }
        int[] f = new int[n], num = new int[n];
        for (int i = 0; i < n; ++i) {
            f[i] = i;
            num[i] = 1;
        }
        Map<Integer, Integer> have = new HashMap<>();
        for (int i = 0; i < n; ++i) {
            int x = nums[i];
            if (x == 1) {
                return false;
            }
            for (int d = 2; d * d <= x; ++d) {
                if (x % d == 0) {
                    if (have.containsKey(d)) {
                        merge(f, num, i, have.get(d));
                    } else {
                        have.put(d, i);
                    }
                    while (x % d == 0) {
                        x /= d;
                    }
                }
            }
            if (x > 1) {
                if (have.containsKey(x)) {
                    merge(f, num, i, have.get(x));
                } else {
                    have.put(x, i);
                }
            }
        }
        return num[getf(f, 0)] == n;

    }
}

Explain:

nope.

Complexity: