Problem
Given a 0-indexed n x n
integer matrix grid
, **return the number of pairs *(Ri, Cj)
* such that row Ri
and column Cj
are equal**.
A row and column pair is considered equal if they contain the same elements in the same order (i.e. an equal array).
Example 1:
Input: grid = [[3,2,1],[1,7,6],[2,7,7]]
Output: 1
Explanation: There is 1 equal row and column pair:
- (Row 2, Column 1): [2,7,7]
Example 2:
Input: grid = [[3,1,2,2],[1,4,4,5],[2,4,2,2],[2,4,2,2]]
Output: 3
Explanation: There are 3 equal row and column pairs:
- (Row 0, Column 0): [3,1,2,2]
- (Row 2, Column 2): [2,4,2,2]
- (Row 3, Column 2): [2,4,2,2]
Constraints:
n == grid.length == grid[i].length
1 <= n <= 200
1 <= grid[i][j] <= 10^5
Solution (Java)
class Solution {
public int equalPairs(int[][] grid) {
int[] tmpCol = new int[grid.length];
Map<Integer, Integer> pairsMap = new HashMap<>();
int pairsCounter = 0;
for (int col = 0; col < grid[0].length; col++) {
for (int row = 0; row < grid.length; row++) {
tmpCol[row] = grid[row][col];
}
int hashCode = Arrays.hashCode(tmpCol);
pairsMap.put(hashCode, pairsMap.getOrDefault(hashCode, 0) + 1);
}
for (int[] row : grid) {
int hashCode = Arrays.hashCode(row);
if (pairsMap.containsKey(hashCode)) {
pairsCounter += pairsMap.get(hashCode);
}
}
return pairsCounter;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).