Problem
Given a string expression
of numbers and operators, return all possible results from computing all the different possible ways to group numbers and operators. You may return the answer in any order.
The test cases are generated such that the output values fit in a 32-bit integer and the number of different results does not exceed 10^4
.
Example 1:
Input: expression = "2-1-1"
Output: [0,2]
Explanation:
((2-1)-1) = 0
(2-(1-1)) = 2
Example 2:
Input: expression = "2*3-4*5"
Output: [-34,-14,-10,-10,10]
Explanation:
(2*(3-(4*5))) = -34
((2*3)-(4*5)) = -14
((2*(3-4))*5) = -10
(2*((3-4)*5)) = -10
(((2*3)-4)*5) = 10
Constraints:
1 <= expression.length <= 20
expression
consists of digits and the operator'+'
,'-'
, and'*'
.All the integer values in the input expression are in the range
[0, 99]
.
Solution
class Solution {
public List<Integer> diffWaysToCompute(String expression) {
return diffWaysToCompute(expression, new HashMap<>());
}
private List<Integer> diffWaysToCompute(String expression, Map<String, List<Integer>> map) {
if (map.containsKey(expression)) {
return map.get(expression);
}
List<Integer> values = new ArrayList<>();
if (!hasOperator(expression)) {
// base case
values.add(Integer.parseInt(expression));
} else {
// Recursive case. DFS
for (int i = 0; i < expression.length(); i++) {
char symbol = expression.charAt(i);
if (!Character.isDigit(symbol)) {
List<Integer> left = diffWaysToCompute(expression.substring(0, i), map);
List<Integer> right = diffWaysToCompute(expression.substring(i + 1), map);
for (Integer l : left) {
for (Integer r : right) {
switch (symbol) {
case '+':
values.add(l + r);
break;
case '-':
values.add(l - r);
break;
case '*':
values.add(l * r);
break;
default:
break;
}
}
}
}
}
}
map.put(expression, values);
return values;
}
private boolean hasOperator(String expression) {
for (int i = 0; i < expression.length(); i++) {
switch (expression.charAt(i)) {
case '+':
case '-':
case '*':
return true;
default:
break;
}
}
return false;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).