Problem
You are given two integers m
and n
representing a 0-indexed m x n
grid. You are also given two 2D integer arrays guards
and walls
where guards[i] = [rowi, coli]
and walls[j] = [rowj, colj]
represent the positions of the ith
guard and jth
wall respectively.
A guard can see every cell in the four cardinal directions (north, east, south, or west) starting from their position unless obstructed by a wall or another guard. A cell is guarded if there is at least one guard that can see it.
Return** the number of unoccupied cells that are not guarded.**
Example 1:
Input: m = 4, n = 6, guards = [[0,0],[1,1],[2,3]], walls = [[0,1],[2,2],[1,4]]
Output: 7
Explanation: The guarded and unguarded cells are shown in red and green respectively in the above diagram.
There are a total of 7 unguarded cells, so we return 7.
Example 2:
Input: m = 3, n = 3, guards = [[1,1]], walls = [[0,1],[1,0],[2,1],[1,2]]
Output: 4
Explanation: The unguarded cells are shown in green in the above diagram.
There are a total of 4 unguarded cells, so we return 4.
Constraints:
1 <= m, n <= 10^5
2 <= m * n <= 10^5
1 <= guards.length, walls.length <= 5 * 10^4
2 <= guards.length + walls.length <= m * n
guards[i].length == walls[j].length == 2
0 <= rowi, rowj < m
0 <= coli, colj < n
All the positions in
guards
andwalls
are unique.
Solution (Java)
class Solution {
public int countUnguarded(int m, int n, int[][] guards, int[][] walls) {
char[][] matrix = new char[m][n];
int result = 0;
for (int i = 0; i <= guards.length - 1; i++) {
int guardRow = guards[i][0];
int guardCol = guards[i][1];
matrix[guardRow][guardCol] = 'G';
}
for (int i = 0; i <= walls.length - 1; i++) {
int wallRow = walls[i][0];
int wallCol = walls[i][1];
matrix[wallRow][wallCol] = 'W';
}
for (int i = 0; i <= guards.length - 1; i++) {
int currentRow = guards[i][0];
int currentCol = guards[i][1] - 1;
while (currentCol >= 0) {
if (matrix[currentRow][currentCol] != 'W'
&& matrix[currentRow][currentCol] != 'G') {
matrix[currentRow][currentCol] = 'R';
} else {
break;
}
currentCol--;
}
currentRow = guards[i][0];
currentCol = guards[i][1] + 1;
while (currentCol <= n - 1) {
if (matrix[currentRow][currentCol] != 'W'
&& matrix[currentRow][currentCol] != 'G') {
matrix[currentRow][currentCol] = 'R';
} else {
break;
}
currentCol++;
}
currentRow = guards[i][0] - 1;
currentCol = guards[i][1];
while (currentRow >= 0) {
if (matrix[currentRow][currentCol] != 'W'
&& matrix[currentRow][currentCol] != 'G') {
matrix[currentRow][currentCol] = 'R';
} else {
break;
}
currentRow--;
}
currentRow = guards[i][0] + 1;
currentCol = guards[i][1];
while (currentRow <= m - 1) {
if (matrix[currentRow][currentCol] != 'W'
&& matrix[currentRow][currentCol] != 'G') {
matrix[currentRow][currentCol] = 'R';
} else {
break;
}
currentRow++;
}
}
for (int i = 0; i <= m - 1; i++) {
for (int j = 0; j <= n - 1; j++) {
if (matrix[i][j] != 'R' && matrix[i][j] != 'G' && matrix[i][j] != 'W') {
result++;
}
}
}
return result;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).