1504. Count Submatrices With All Ones

Difficulty:
Related Topics:
Similar Questions:

    Problem

    Given an m x n binary matrix mat, **return the number of *submatrices* that have all ones**.

      Example 1:

    Input: mat = [[1,0,1],[1,1,0],[1,1,0]]
    Output: 13
    Explanation: 
    There are 6 rectangles of side 1x1.
    There are 2 rectangles of side 1x2.
    There are 3 rectangles of side 2x1.
    There is 1 rectangle of side 2x2. 
    There is 1 rectangle of side 3x1.
    Total number of rectangles = 6 + 2 + 3 + 1 + 1 = 13.
    

    Example 2:

    Input: mat = [[0,1,1,0],[0,1,1,1],[1,1,1,0]]
    Output: 24
    Explanation: 
    There are 8 rectangles of side 1x1.
    There are 5 rectangles of side 1x2.
    There are 2 rectangles of side 1x3. 
    There are 4 rectangles of side 2x1.
    There are 2 rectangles of side 2x2. 
    There are 2 rectangles of side 3x1. 
    There is 1 rectangle of side 3x2. 
    Total number of rectangles = 8 + 5 + 2 + 4 + 2 + 2 + 1 = 24.
    

      Constraints:

    Solution (Java)

    class Solution {
        public int numSubmat(int[][] mat) {
            int[][] dp = new int[mat.length][mat[0].length];
            for (int i = 0; i < mat.length; i++) {
                int c = 0;
                for (int j = mat[0].length - 1; j >= 0; j--) {
                    if (mat[i][j] == 1) {
                        c++;
                    } else {
                        c = 0;
                    }
                    dp[i][j] = c;
                }
            }
            int ans = 0;
            for (int i = 0; i < mat.length; i++) {
                for (int j = 0; j < mat[0].length; j++) {
                    int x = Integer.MAX_VALUE;
                    for (int k = i; k < mat.length; k++) {
                        x = Math.min(x, dp[k][j]);
                        ans += x;
                    }
                }
            }
            return ans;
        }
    }
    

    Explain:

    nope.

    Complexity: