894. All Possible Full Binary Trees

Difficulty:
Related Topics:
Similar Questions:

    Problem

    Given an integer n, return **a list of all possible *full binary trees* with** n nodes. Each node of each tree in the answer must have Node.val == 0.

    Each element of the answer is the root node of one possible tree. You may return the final list of trees in any order.

    A full binary tree is a binary tree where each node has exactly 0 or 2 children.

      Example 1:

    Input: n = 7
    Output: [[0,0,0,null,null,0,0,null,null,0,0],[0,0,0,null,null,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,null,null,null,null,0,0],[0,0,0,0,0,null,null,0,0]]
    

    Example 2:

    Input: n = 3
    Output: [[0,0,0]]
    

      Constraints:

    Solution (Java)

    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public List<TreeNode> allPossibleFBT(int n) {
            if (n % 2 == 0) {
                // no complete binary tree possible
                return new ArrayList<>();
            }
            List<TreeNode>[] dp = new ArrayList[n + 1];
            // form left to right
            for (int i = 1; i <= n; i += 2) {
                helper(i, dp);
            }
            return dp[n];
        }
    
        // Using tabulation
        public void helper(int n, List<TreeNode>[] dp) {
            if (n <= 0) {
                return;
            }
            if (n == 1) {
                dp[1] = new ArrayList<>();
                dp[1].add(new TreeNode(0));
                return;
            }
            dp[n] = new ArrayList<>();
            for (int i = 1; i < n; i += 2) {
                // left
                for (TreeNode nodeL : dp[i]) {
                    // right
                    for (TreeNode nodeR : dp[n - i - 1]) {
                        // 1 node used here
                        TreeNode root = new TreeNode(0);
                        root.left = nodeL;
                        root.right = nodeR;
                        dp[n].add(root);
                    }
                }
            }
        }
    }
    

    Explain:

    nope.

    Complexity: