Problem
You are given an integer n
and an integer start
.
Define an array nums
where nums[i] = start + 2 * i
(0-indexed) and n == nums.length
.
Return the bitwise XOR of all elements of nums
.
Example 1:
Input: n = 5, start = 0
Output: 8
Explanation: Array nums is equal to [0, 2, 4, 6, 8] where (0 ^ 2 ^ 4 ^ 6 ^ 8) = 8.
Where "^" corresponds to bitwise XOR operator.
Example 2:
Input: n = 4, start = 3
Output: 8
Explanation: Array nums is equal to [3, 5, 7, 9] where (3 ^ 5 ^ 7 ^ 9) = 8.
Constraints:
1 <= n <= 1000
0 <= start <= 1000
n == nums.length
Solution (Java)
class Solution {
public int xorOperation(int n, int start) {
int[] nums = new int[n];
for (int i = 0; i < n; i++) {
nums[i] = start + 2 * i;
}
int result = 0;
for (int num : nums) {
result ^= num;
}
return result;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).