Problem
A split of an integer array is good if:
The array is split into three non-empty contiguous subarrays - named
left
,mid
,right
respectively from left to right.The sum of the elements in
left
is less than or equal to the sum of the elements inmid
, and the sum of the elements inmid
is less than or equal to the sum of the elements inright
.
Given nums
, an array of non-negative integers, return **the number of *good* ways to split** nums
. As the number may be too large, return it modulo 10^9 + 7
.
Example 1:
Input: nums = [1,1,1]
Output: 1
Explanation: The only good way to split nums is [1] [1] [1].
Example 2:
Input: nums = [1,2,2,2,5,0]
Output: 3
Explanation: There are three good ways of splitting nums:
[1] [2] [2,2,5,0]
[1] [2,2] [2,5,0]
[1,2] [2,2] [5,0]
Example 3:
Input: nums = [3,2,1]
Output: 0
Explanation: There is no good way to split nums.
Constraints:
3 <= nums.length <= 10^5
0 <= nums[i] <= 10^4
Solution (Java)
class Solution {
public int waysToSplit(int[] nums) {
int sum = 0;
for (int num : nums) {
sum += num;
}
int cur = 0;
long res = 0;
int i = 0;
int idx1 = 1;
int sum1 = nums[0];
int idx2 = 1;
int sum2 = nums[0];
while (i < nums.length) {
cur += nums[i];
int right = sum - cur;
if (i == 0 || i == nums.length - 1) {
i++;
continue;
}
while (idx1 <= i && sum1 <= cur - sum1) {
sum1 += nums[idx1++];
}
while (idx2 < idx1 && cur - sum2 > right) {
sum2 += nums[idx2++];
}
if (idx1 > idx2) {
res = (res + idx1 - idx2) % 1000_000_007;
}
i++;
}
return (int) res;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).