Problem
You are given an integer array nums
. You can choose exactly one index (0-indexed) and remove the element. Notice that the index of the elements may change after the removal.
For example, if nums = [6,1,7,4,1]
:
Choosing to remove index
1
results innums = [6,7,4,1]
.Choosing to remove index
2
results innums = [6,1,4,1]
.Choosing to remove index
4
results innums = [6,1,7,4]
.
An array is fair if the sum of the odd-indexed values equals the sum of the even-indexed values.
Return the **number of indices that you could choose such that after the removal, nums
****is *fair*. **
Example 1:
Input: nums = [2,1,6,4]
Output: 1
Explanation:
Remove index 0: [1,6,4] -> Even sum: 1 + 4 = 5. Odd sum: 6. Not fair.
Remove index 1: [2,6,4] -> Even sum: 2 + 4 = 6. Odd sum: 6. Fair.
Remove index 2: [2,1,4] -> Even sum: 2 + 4 = 6. Odd sum: 1. Not fair.
Remove index 3: [2,1,6] -> Even sum: 2 + 6 = 8. Odd sum: 1. Not fair.
There is 1 index that you can remove to make nums fair.
Example 2:
Input: nums = [1,1,1]
Output: 3
Explanation: You can remove any index and the remaining array is fair.
Example 3:
Input: nums = [1,2,3]
Output: 0
Explanation: You cannot make a fair array after removing any index.
Constraints:
1 <= nums.length <= 10^5
1 <= nums[i] <= 10^4
Solution (Java)
class Solution {
public int waysToMakeFair(int[] nums) {
int res = 0;
int[] even = new int[nums.length];
int[] odd = new int[nums.length];
int oddSum = 0;
int evenSum = 0;
for (int i = 0; i < nums.length; i++) {
if (i % 2 == 0) {
evenSum += nums[i];
} else {
oddSum += nums[i];
}
even[i] = evenSum;
odd[i] = oddSum;
}
for (int i = 0; i < nums.length; i++) {
if (i == 0) {
evenSum = odd[nums.length - 1] - odd[0];
oddSum = even[nums.length - 1] - even[0];
} else {
oddSum = odd[i - 1] + even[nums.length - 1] - even[i];
evenSum = even[i - 1] + odd[nums.length - 1] - odd[i];
}
if (evenSum == oddSum) {
res++;
}
}
return res;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).