Problem
International Morse Code defines a standard encoding where each letter is mapped to a series of dots and dashes, as follows:
'a'
maps to".-"
,'b'
maps to"-..."
,'c'
maps to"-.-."
, and so on.
For convenience, the full table for the 26
letters of the English alphabet is given below:
[".-","-...","-.-.","-..",".","..-.","--.","....","..",".---","-.-",".-..","--","-.","---",".--.","--.-",".-.","...","-","..-","...-",".--","-..-","-.--","--.."]
Given an array of strings words
where each word can be written as a concatenation of the Morse code of each letter.
- For example,
"cab"
can be written as"-.-..--..."
, which is the concatenation of"-.-."
,".-"
, and"-..."
. We will call such a concatenation the transformation of a word.
Return **the number of different *transformations* among all words we have**.
Example 1:
Input: words = ["gin","zen","gig","msg"]
Output: 2
Explanation: The transformation of each word is:
"gin" -> "--...-."
"zen" -> "--...-."
"gig" -> "--...--."
"msg" -> "--...--."
There are 2 different transformations: "--...-." and "--...--.".
Example 2:
Input: words = ["a"]
Output: 1
Constraints:
1 <= words.length <= 100
1 <= words[i].length <= 12
words[i]
consists of lowercase English letters.
Solution
/**
* @param {string[]} words
* @return {number}
*/
var uniqueMorseRepresentations = function(words) {
return new Set(words.map(word => word.split('').map(letter => alphabet[letter]).join(''))).size
};
const alphabet = {
a: '.-', b: '-...', c: '-.-.', d: '-..', e: '.', f: '..-.', g: '--.', h: '....', i: '..', j: '.---', k: '-.-', l: '.-..', m: '--',
n: '-.', o: '---', p: '.--.', q: '--.-', r: '.-.', s: '...', t: '-', u: '..-', v: '...-', w: '.--', x: '-..-', y: '-.--', z: '--..'
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).