Problem
Given n, how many structurally unique BST's (binary search trees) that store values 1 … n?
Example:
Input: 3
Output: 5
Explanation:
Given n = 3, there are a total of 5 unique BST's:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
Solution (Java)
class Solution {
public int numTrees(int n) {
long result = 1;
for (int i = 0; i < n; i++) {
result *= 2L * n - i;
result /= i + 1;
}
result /= n + 1;
return (int) result;
}
}
Solution (Javascript)
/**
* @param {number} n
* @return {number}
*/
var numTrees = function(n) {
var dp = [1, 1];
for (i = 2; i <= n; i++) {
dp[i] = 0;
for (j = 1; j <= i; j++) {
dp[i] += dp[i - j] * dp[j - 1];
}
}
return dp[n];
};
Explain:
例如:有 3
个节点,取 1
个作为 root
,还剩 2
个。可以左边 0
个,右边 2
个;左边 1
个,右边 1
个;左边 2
个,右边 0
个。即:F(3) = F(0) * F(2) + F(1) * F(1) + F(2) * F(0)
。其中 F(0) = F(1) = 1
。
Complexity:
- Time complexity :
- Space complexity :