1726. Tuple with Same Product

Difficulty:
Related Topics:
Similar Questions:

    Problem

    Given an array nums of distinct positive integers, return **the number of tuples *(a, b, c, d)* such that a * b = c * d where a, b, c, and d are elements of nums, and a != b != c != d.**

      Example 1:

    Input: nums = [2,3,4,6]
    Output: 8
    Explanation: There are 8 valid tuples:
    (2,6,3,4) , (2,6,4,3) , (6,2,3,4) , (6,2,4,3)
    (3,4,2,6) , (4,3,2,6) , (3,4,6,2) , (4,3,6,2)
    

    Example 2:

    Input: nums = [1,2,4,5,10]
    Output: 16
    Explanation: There are 16 valid tuples:
    (1,10,2,5) , (1,10,5,2) , (10,1,2,5) , (10,1,5,2)
    (2,5,1,10) , (2,5,10,1) , (5,2,1,10) , (5,2,10,1)
    (2,10,4,5) , (2,10,5,4) , (10,2,4,5) , (10,2,5,4)
    (4,5,2,10) , (4,5,10,2) , (5,4,2,10) , (5,4,10,2)
    

      Constraints:

    Solution (Java)

    class Solution {
        public int tupleSameProduct(int[] nums) {
            HashMap<Integer, Integer> ab = new HashMap<>();
            for (int i = 0; i < nums.length; i++) {
                for (int j = i + 1; j < nums.length; j++) {
                    ab.put(nums[i] * nums[j], ab.getOrDefault(nums[i] * nums[j], 0) + 1);
                }
            }
            int count = 0;
            for (Map.Entry<Integer, Integer> entry : ab.entrySet()) {
                int val = entry.getValue();
                count = count + (val * (val - 1)) / 2;
            }
            return count * 8;
        }
    }
    

    Explain:

    nope.

    Complexity: