Problem
Given a binary search tree and the lowest and highest boundaries as L
and R
, trim the tree so that all its elements lies in [L, R]
(R >= L). You might need to change the root of the tree, so the result should return the new root of the trimmed binary search tree.
Example 1:
Input:
1
/ \
0 2
L = 1
R = 2
Output:
1
\
2
Example 2:
Input:
3
/ \
0 4
\
2
/
1
L = 1
R = 3
Output:
3
/
2
/
1
Solution (Java)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode trimBST(TreeNode root, int l, int r) {
if (root == null) {
return root;
}
if (root.val > r) {
return trimBST(root.left, l, r);
}
if (root.val < l) {
return trimBST(root.right, l, r);
}
root.left = trimBST(root.left, l, r);
root.right = trimBST(root.right, l, r);
return root;
}
}
Solution (Javascript)
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @param {number} L
* @param {number} R
* @return {TreeNode}
*/
var trimBST = function(root, L, R) {
if (!root) return null;
if (root.val < L) return trimBST(root.right, L, R);
if (root.val > R) return trimBST(root.left, L, R);
root.left = trimBST(root.left, L, R);
root.right = trimBST(root.right, L, R);
return root;
};
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(1).