Problem
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Solution (Java)
class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
if (triangle == null || triangle.isEmpty()) {
return 0;
}
int[][] dp = new int[triangle.size()][triangle.get(triangle.size() - 1).size()];
for (int[] temp : dp) {
Arrays.fill(temp, -10001);
}
return dfs(triangle, dp, 0, 0);
}
private int dfs(List<List<Integer>> triangle, int[][] dp, int row, int col) {
if (row >= triangle.size()) {
return 0;
}
if (dp[row][col] != -10001) {
return dp[row][col];
}
int sum =
triangle.get(row).get(col)
+ Math.min(
dfs(triangle, dp, row + 1, col),
dfs(triangle, dp, row + 1, col + 1));
dp[row][col] = sum;
return sum;
}
}
Solution (Javascript)
/**
* @param {number[][]} triangle
* @return {number}
*/
var minimumTotal = function(triangle) {
var len = triangle.length;
var len2 = 0;
var res = Number.MAX_SAFE_INTEGER;
var dp = Array(len);
for (var i = 0; i < len; i++) {
len2 = triangle[i].length;
dp[i] = Array(len2).fill(0);
for (var j = 0; j < len2; j++) {
dp[i][j] = getMinParent(dp, i, j) + triangle[i][j];
if (i === (len - 1)) res = Math.min(res, dp[i][j]);
}
}
return res === Number.MAX_SAFE_INTEGER ? 0 : res;
};
var getMinParent = function (dp, i, j) {
var left = 0;
var right = 0;
if (i === 0) return 0;
if (j === 0) left = Number.MAX_SAFE_INTEGER;
else left = dp[i - 1][j - 1];
if (j === dp[i - 1].length) right = Number.MAX_SAFE_INTEGER;
else right = dp[i - 1][j];
return Math.min(left, right);
};
Explain:
动态规划:
dp[i][j]
记录到达 i
行 j
列的点的最小和
- 每个点可以由上一行的两个点(或只有一个点)到达,它的值只与这两个点有关
- 到达某个点的最小和 = min(上一行左边点最小和, 上一行右边点最小和) + 当前点的数值
- 最后找出最后一行的最小值就好
优化:其实dp只要保留上一行的值就好,我这里保留了所有行的值,可以用滚动数组
Complexity:
- Time complexity : O(m*n).
- Space complexity : O(m*n).