Problem
In a string composed of 'L'
, 'R'
, and 'X'
characters, like "RXXLRXRXL"
, a move consists of either replacing one occurrence of "XL"
with "LX"
, or replacing one occurrence of "RX"
with "XR"
. Given the starting string start
and the ending string end
, return True
if and only if there exists a sequence of moves to transform one string to the other.
Example 1:
Input: start = "RXXLRXRXL", end = "XRLXXRRLX"
Output: true
Explanation: We can transform start to end following these steps:
RXXLRXRXL ->
XRXLRXRXL ->
XRLXRXRXL ->
XRLXXRRXL ->
XRLXXRRLX
Example 2:
Input: start = "X", end = "L"
Output: false
Constraints:
1 <= start.length <= 10^4
start.length == end.length
Both
start
andend
will only consist of characters in'L'
,'R'
, and'X'
.
Solution (Java)
class Solution {
public boolean canTransform(String start, String end) {
int i1 = 0;
int i2 = 0;
char[] s1 = start.toCharArray();
char[] s2 = end.toCharArray();
while (i1 < s1.length && i2 < s2.length) {
while (i1 < s1.length && s1[i1] == 'X') {
i1++;
}
while (i2 < s2.length && s2[i2] == 'X') {
i2++;
}
if (i1 == s1.length && i2 == s2.length) {
return true;
}
if (i1 == s1.length || i2 == s2.length) {
return false;
}
char c1 = s1[i1];
char c2 = s2[i2];
if (c1 != c2) {
return false;
}
if (c1 == 'L' && i1 < i2) {
return false;
}
if (c1 == 'R' && i1 > i2) {
return false;
}
i1++;
i2++;
}
while (i1 < s1.length && start.charAt(i1) == 'X') {
i1++;
}
while (i2 < s2.length && end.charAt(i2) == 'X') {
i2++;
}
return i1 == s1.length && i2 == s2.length;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).