Problem
A super ugly number is a positive integer whose prime factors are in the array primes
.
Given an integer n
and an array of integers primes
, return the nth
super ugly number.
The nth
super ugly number is guaranteed to fit in a 32-bit signed integer.
Example 1:
Input: n = 12, primes = [2,7,13,19]
Output: 32
Explanation: [1,2,4,7,8,13,14,16,19,26,28,32] is the sequence of the first 12 super ugly numbers given primes = [2,7,13,19].
Example 2:
Input: n = 1, primes = [2,3,5]
Output: 1
Explanation: 1 has no prime factors, therefore all of its prime factors are in the array primes = [2,3,5].
Constraints:
1 <= n <= 10^5
1 <= primes.length <= 100
2 <= primes[i] <= 1000
primes[i]
is guaranteed to be a prime number.All the values of
primes
are unique and sorted in ascending order.
Solution
class Solution {
public int nthSuperUglyNumber(int n, int[] primes) {
long[] primes1 = new long[primes.length];
for (int i = 0; i < primes.length; i++) {
primes1[i] = primes[i];
}
int[] index = new int[primes.length];
long[] n1 = new long[n];
n1[0] = 1L;
for (int i = 1; i < n; i++) {
long min = Long.MAX_VALUE;
for (long l : primes1) {
min = Math.min(min, l);
}
n1[i] = min;
for (int j = 0; j < primes1.length; j++) {
if (min == primes1[j]) {
primes1[j] = primes[j] * (n1[++index[j]]);
}
}
}
return (int) n1[n - 1];
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).