Problem
Your task is to calculate ab
mod 1337
where a
is a positive integer and b
is an extremely large positive integer given in the form of an array.
Example 1:
Input: a = 2, b = [3]
Output: 8
Example 2:
Input: a = 2, b = [1,0]
Output: 1024
Example 3:
Input: a = 1, b = [4,3,3,8,5,2]
Output: 1
Constraints:
1 <= a <= 2^31 - 1
1 <= b.length <= 2000
0 <= b[i] <= 9
b
does not contain leading zeros.
Solution
class Solution {
private static final int MOD = 1337;
public int superPow(int a, int[] b) {
int phi = phi(MOD);
int arrMod = arrMod(b, phi);
if (isGreaterOrEqual(b, phi)) {
// Cycle has started
// cycle starts at phi with length phi
return exp(a % MOD, phi + arrMod);
}
return exp(a % MOD, arrMod);
}
private int phi(int n) {
double result = n;
for (int p = 2; p * p <= n; p++) {
if (n % p > 0) {
continue;
}
while (n % p == 0) {
n /= p;
}
result *= 1.0 - 1.0 / p;
}
if (n > 1) {
// if starting n was also prime (so it was greater than sqrt(n))
result *= (1.0 - (1.0 / n));
}
return (int) result;
}
// Returns true if number in array is greater than integer named phi
private boolean isGreaterOrEqual(int[] b, int phi) {
int cur = 0;
for (int j : b) {
cur = cur * 10 + j;
if (cur >= phi) {
return true;
}
}
return false;
}
// Returns number in array mod phi
private int arrMod(int[] b, int phi) {
int res = 0;
for (int j : b) {
res = (res * 10 + j) % phi;
}
return res;
}
// Binary exponentiation
private int exp(int a, int b) {
int y = 1;
while (b > 0) {
if (b % 2 == 1) {
y = (y * a) % MOD;
}
a = (a * a) % MOD;
b /= 2;
}
return y;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).