Problem
Let's say a positive integer is a super-palindrome if it is a palindrome, and it is also the square of a palindrome.
Given two positive integers left
and right
represented as strings, return **the number of *super-palindromes* integers in the inclusive range** [left, right]
.
Example 1:
Input: left = "4", right = "1000"
Output: 4
Explanation: 4, 9, 121, and 484 are superpalindromes.
Note that 676 is not a superpalindrome: 26 * 26 = 676, but 26 is not a palindrome.
Example 2:
Input: left = "1", right = "2"
Output: 1
Constraints:
1 <= left.length, right.length <= 18
left
andright
consist of only digits.left
andright
cannot have leading zeros.left
andright
represent integers in the range[1, 1018 - 1]
.left
is less than or equal toright
.
Solution
class Solution {
public int superpalindromesInRange(String left, String right) {
long l = Long.parseLong(left);
long r = Long.parseLong(right);
int cnt = 0;
long cur = 1;
while (true) {
long p1 = getPalindromeIncLastDigit(cur);
long p2 = getPalindromeExcLastDigit(cur);
long sq1 = p1 * p1;
long sq2 = p2 * p2;
if (sq2 > r) {
break;
}
if (sq1 >= l && sq1 <= r && isPalindrome(sq1)) {
cnt++;
}
if (sq2 >= l && isPalindrome(sq2)) {
cnt++;
}
cur++;
}
return cnt;
}
private boolean isPalindrome(long val) {
long construct = 0;
if (val % 10 == 0 && val >= 10) {
return false;
}
while (construct < val) {
construct = construct * 10 + val % 10;
val /= 10;
}
return construct == val || construct / 10 == val;
}
private long getPalindromeIncLastDigit(long val) {
long copy = val;
while (copy != 0) {
val = val * 10 + copy % 10;
copy /= 10;
}
return val;
}
private long getPalindromeExcLastDigit(long val) {
long copy = val / 10;
while (copy != 0) {
val = val * 10 + copy % 10;
copy /= 10;
}
return val;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).