2104. Sum of Subarray Ranges

Difficulty:
Related Topics:
Similar Questions:

Problem

You are given an integer array nums. The range of a subarray of nums is the difference between the largest and smallest element in the subarray.

Return **the *sum of all* subarray ranges of nums.**

A subarray is a contiguous non-empty sequence of elements within an array.

  Example 1:

Input: nums = [1,2,3]
Output: 4
Explanation: The 6 subarrays of nums are the following:
[1], range = largest - smallest = 1 - 1 = 0 
[2], range = 2 - 2 = 0
[3], range = 3 - 3 = 0
[1,2], range = 2 - 1 = 1
[2,3], range = 3 - 2 = 1
[1,2,3], range = 3 - 1 = 2
So the sum of all ranges is 0 + 0 + 0 + 1 + 1 + 2 = 4.

Example 2:

Input: nums = [1,3,3]
Output: 4
Explanation: The 6 subarrays of nums are the following:
[1], range = largest - smallest = 1 - 1 = 0
[3], range = 3 - 3 = 0
[3], range = 3 - 3 = 0
[1,3], range = 3 - 1 = 2
[3,3], range = 3 - 3 = 0
[1,3,3], range = 3 - 1 = 2
So the sum of all ranges is 0 + 0 + 0 + 2 + 0 + 2 = 4.

Example 3:

Input: nums = [4,-2,-3,4,1]
Output: 59
Explanation: The sum of all subarray ranges of nums is 59.

  Constraints:

  Follow-up: Could you find a solution with O(n) time complexity?

Solution (Java)

class Solution {
    public long subArrayRanges(int[] nums) {
        int n = nums.length;
        long sum = 0;
        Deque<Integer> q = new ArrayDeque<>();

        q.add(-1);
        for (int i = 0; i <= n; i++) {
            while (q.peekLast() != -1 && (i == n || nums[q.peekLast()] <= nums[i])) {
                int cur = q.removeLast();
                int left = q.peekLast();
                int right = i;
                sum += 1L * (cur - left) * (right - cur) * nums[cur];
            }
            q.add(i);
        }

        q.clear();
        q.add(-1);
        for (int i = 0; i <= n; i++) {
            while (q.peekLast() != -1 && (i == n || nums[q.peekLast()] >= nums[i])) {
                int cur = q.removeLast();
                int left = q.peekLast();
                int right = i;
                sum -= 1L * (cur - left) * (right - cur) * nums[cur];
            }
            q.add(i);
        }
        return sum;
    }
}

Explain:

nope.

Complexity: