2081. Sum of k-Mirror Numbers

Difficulty:
Related Topics:
Similar Questions:

Problem

A k-mirror number is a positive integer without leading zeros that reads the same both forward and backward in base-10 as well as in base-k.

Given the base k and the number n, return **the *sum* of the** n *smallest k-mirror numbers*.

  Example 1:

Input: k = 2, n = 5
Output: 25
Explanation:
The 5 smallest 2-mirror numbers and their representations in base-2 are listed as follows:
  base-10    base-2
    1          1
    3          11
    5          101
    7          111
    9          1001
Their sum = 1 + 3 + 5 + 7 + 9 = 25. 

Example 2:

Input: k = 3, n = 7
Output: 499
Explanation:
The 7 smallest 3-mirror numbers are and their representations in base-3 are listed as follows:
  base-10    base-3
    1          1
    2          2
    4          11
    8          22
    121        11111
    151        12121
    212        21212
Their sum = 1 + 2 + 4 + 8 + 121 + 151 + 212 = 499.

Example 3:

Input: k = 7, n = 17
Output: 20379000
Explanation: The 17 smallest 7-mirror numbers are:
1, 2, 3, 4, 5, 6, 8, 121, 171, 242, 292, 16561, 65656, 2137312, 4602064, 6597956, 6958596

  Constraints:

Solution

class Solution {
    public long kMirror(int k, int n) {
        List<Long> result = new ArrayList<>();
        int len = 1;
        while (result.size() < n) {
            backtrack(result, new char[len++], k, n, 0);
        }
        long sum = 0;
        for (Long num : result) {
            sum += num;
        }
        return sum;
    }

    private void backtrack(List<Long> result, char[] arr, int k, int n, int index) {
        if (result.size() == n) {
            return;
        }
        if (index >= (arr.length + 1) / 2) {
            // Number in base-10
            Long number = Long.parseLong(String.valueOf(arr), k);

            if (isPalindrome(number)) {
                result.add(number);
            }
            return;
        }
        // Generate base-k palindrome number in arr.length without leading zeros
        for (char i = 0; i < k; i++) {
            if (index == 0 && i == 0) {
                // Leading zeros
                continue;
            }
            char c = (char) (i + '0');
            arr[index] = c;
            arr[arr.length - 1 - index] = c;
            backtrack(result, arr, k, n, index + 1);
        }
    }

    private boolean isPalindrome(Long number) {
        String strNum = String.valueOf(number);
        int left = 0;
        int right = strNum.length() - 1;
        while (left < right) {
            if (strNum.charAt(left) == strNum.charAt(right)) {
                left++;
                right--;
            } else {
                return false;
            }
        }
        return true;
    }
}

Explain:

nope.

Complexity: