Problem
A k-mirror number is a positive integer without leading zeros that reads the same both forward and backward in base-10 as well as in base-k.
For example,
9
is a 2-mirror number. The representation of9
in base-10 and base-2 are9
and1001
respectively, which read the same both forward and backward.On the contrary,
4
is not a 2-mirror number. The representation of4
in base-2 is100
, which does not read the same both forward and backward.
Given the base k
and the number n
, return **the *sum* of the** n
*smallest k-mirror numbers*.
Example 1:
Input: k = 2, n = 5
Output: 25
Explanation:
The 5 smallest 2-mirror numbers and their representations in base-2 are listed as follows:
base-10 base-2
1 1
3 11
5 101
7 111
9 1001
Their sum = 1 + 3 + 5 + 7 + 9 = 25.
Example 2:
Input: k = 3, n = 7
Output: 499
Explanation:
The 7 smallest 3-mirror numbers are and their representations in base-3 are listed as follows:
base-10 base-3
1 1
2 2
4 11
8 22
121 11111
151 12121
212 21212
Their sum = 1 + 2 + 4 + 8 + 121 + 151 + 212 = 499.
Example 3:
Input: k = 7, n = 17
Output: 20379000
Explanation: The 17 smallest 7-mirror numbers are:
1, 2, 3, 4, 5, 6, 8, 121, 171, 242, 292, 16561, 65656, 2137312, 4602064, 6597956, 6958596
Constraints:
2 <= k <= 9
1 <= n <= 30
Solution
class Solution {
public long kMirror(int k, int n) {
List<Long> result = new ArrayList<>();
int len = 1;
while (result.size() < n) {
backtrack(result, new char[len++], k, n, 0);
}
long sum = 0;
for (Long num : result) {
sum += num;
}
return sum;
}
private void backtrack(List<Long> result, char[] arr, int k, int n, int index) {
if (result.size() == n) {
return;
}
if (index >= (arr.length + 1) / 2) {
// Number in base-10
Long number = Long.parseLong(String.valueOf(arr), k);
if (isPalindrome(number)) {
result.add(number);
}
return;
}
// Generate base-k palindrome number in arr.length without leading zeros
for (char i = 0; i < k; i++) {
if (index == 0 && i == 0) {
// Leading zeros
continue;
}
char c = (char) (i + '0');
arr[index] = c;
arr[arr.length - 1 - index] = c;
backtrack(result, arr, k, n, index + 1);
}
}
private boolean isPalindrome(Long number) {
String strNum = String.valueOf(number);
int left = 0;
int right = strNum.length() - 1;
while (left < right) {
if (strNum.charAt(left) == strNum.charAt(right)) {
left++;
right--;
} else {
return false;
}
}
return true;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).