Problem
Given an integer array nums
, return the sum of floor(nums[i] / nums[j])
for all pairs of indices 0 <= i, j < nums.length
in the array. Since the answer may be too large, return it modulo 10^9 + 7
.
The floor()
function returns the integer part of the division.
Example 1:
Input: nums = [2,5,9]
Output: 10
Explanation:
floor(2 / 5) = floor(2 / 9) = floor(5 / 9) = 0
floor(2 / 2) = floor(5 / 5) = floor(9 / 9) = 1
floor(5 / 2) = 2
floor(9 / 2) = 4
floor(9 / 5) = 1
We calculate the floor of the division for every pair of indices in the array then sum them up.
Example 2:
Input: nums = [7,7,7,7,7,7,7]
Output: 49
Constraints:
1 <= nums.length <= 10^5
1 <= nums[i] <= 10^5
Solution
class Solution {
public int sumOfFlooredPairs(int[] nums) {
long mod = 1000000007;
Arrays.sort(nums);
int max = nums[nums.length - 1];
int[] counts = new int[max + 1];
long[] qnts = new long[max + 1];
for (int k : nums) {
counts[k]++;
}
for (int i = 1; i < max + 1; i++) {
if (counts[i] == 0) {
continue;
}
int j = i;
while (j <= max) {
qnts[j] += counts[i];
j = j + i;
}
}
for (int i = 1; i < max + 1; i++) {
qnts[i] = (qnts[i] + qnts[i - 1]) % mod;
}
long sum = 0;
for (int k : nums) {
sum = (sum + qnts[k]) % mod;
}
return (int) sum;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).