Problem
You are given a 0-indexed integer array nums
. For each index i
(1 <= i <= nums.length - 2
) the beauty of nums[i]
equals:
2
, ifnums[j] < nums[i] < nums[k]
, for all0 <= j < i
and for alli < k <= nums.length - 1
.1
, ifnums[i - 1] < nums[i] < nums[i + 1]
, and the previous condition is not satisfied.0
, if none of the previous conditions holds.
Return** the sum of beauty of all nums[i]
where **1 <= i <= nums.length - 2
.
Example 1:
Input: nums = [1,2,3]
Output: 2
Explanation: For each index i in the range 1 <= i <= 1:
- The beauty of nums[1] equals 2.
Example 2:
Input: nums = [2,4,6,4]
Output: 1
Explanation: For each index i in the range 1 <= i <= 2:
- The beauty of nums[1] equals 1.
- The beauty of nums[2] equals 0.
Example 3:
Input: nums = [3,2,1]
Output: 0
Explanation: For each index i in the range 1 <= i <= 1:
- The beauty of nums[1] equals 0.
Constraints:
3 <= nums.length <= 10^5
1 <= nums[i] <= 10^5
Solution (Java)
class Solution {
public int sumOfBeauties(int[] nums) {
int[] maxArr = new int[nums.length];
maxArr[0] = nums[0];
for (int i = 1; i < nums.length - 1; i++) {
maxArr[i] = Math.max(maxArr[i - 1], nums[i]);
}
int[] minArr = new int[nums.length];
minArr[nums.length - 1] = nums[nums.length - 1];
for (int i = nums.length - 2; i >= 0; i--) {
minArr[i] = Math.min(minArr[i + 1], nums[i]);
}
int sum = 0;
for (int i = 1; i < nums.length - 1; i++) {
if (nums[i] > maxArr[i - 1] && nums[i] < minArr[i + 1]) {
sum += 2;
} else if (nums[i] > nums[i - 1] && nums[i] < nums[i + 1]) {
sum += 1;
}
}
return sum;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).