Problem
A password is considered strong if the below conditions are all met:
It has at least
6
characters and at most20
characters.It contains at least one lowercase letter, at least one uppercase letter, and at least one digit.
It does not contain three repeating characters in a row (i.e.,
"...aaa..."
is weak, but"...aa...a..."
is strong, assuming other conditions are met).
Given a string password
, return the minimum number of steps required to make password
strong. if password
is already strong, return 0
.
In one step, you can:
Insert one character to
password
,Delete one character from
password
, orReplace one character of
password
with another character.
Example 1:
Input: password = "a"
Output: 5
Example 2:
Input: password = "aA1"
Output: 3
Example 3:
Input: password = "1337C0d3"
Output: 0
Constraints:
1 <= password.length <= 50
password
consists of letters, digits, dot'.'
or exclamation mark'!'
.
Solution (Java)
class Solution {
public int strongPasswordChecker(String s) {
int res = 0;
int a1 = 1;
int a2 = 1;
int d = 1;
char[] carr = s.toCharArray();
int[] arr = new int[carr.length];
int i1 = 0;
while (i1 < arr.length) {
if (Character.isLowerCase(carr[i1])) {
a1 = 0;
}
if (Character.isUpperCase(carr[i1])) {
a2 = 0;
}
if (Character.isDigit(carr[i1])) {
d = 0;
}
int j = i1;
while (i1 < carr.length && carr[i1] == carr[j]) {
i1++;
}
arr[j] = i1 - j;
}
int totalMissing = (a1 + a2 + d);
if (arr.length < 6) {
res += totalMissing + Math.max(0, 6 - (arr.length + totalMissing));
} else {
int overLen = Math.max(arr.length - 20, 0);
int leftOver = 0;
res += overLen;
for (int k = 1; k < 3; k++) {
for (int i = 0; i < arr.length && overLen > 0; i++) {
if (arr[i] < 3 || arr[i] % 3 != (k - 1)) {
continue;
}
arr[i] -= Math.min(overLen, k);
overLen -= k;
}
}
for (int i = 0; i < arr.length; i++) {
if (arr[i] >= 3 && overLen > 0) {
int need = arr[i] - 2;
arr[i] -= overLen;
overLen -= need;
}
if (arr[i] >= 3) {
leftOver += arr[i] / 3;
}
}
res += Math.max(totalMissing, leftOver);
}
return res;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).