Problem
You are given a string of digits num
, such as "123456579"
. We can split it into a Fibonacci-like sequence [123, 456, 579]
.
Formally, a Fibonacci-like sequence is a list f
of non-negative integers such that:
0 <= f[i] < 2^31
, (that is, each integer fits in a 32-bit signed integer type),f.length >= 3
, andf[i] + f[i + 1] == f[i + 2]
for all0 <= i < f.length - 2
.
Note that when splitting the string into pieces, each piece must not have extra leading zeroes, except if the piece is the number 0
itself.
Return any Fibonacci-like sequence split from num
, or return []
if it cannot be done.
Example 1:
Input: num = "1101111"
Output: [11,0,11,11]
Explanation: The output [110, 1, 111] would also be accepted.
Example 2:
Input: num = "112358130"
Output: []
Explanation: The task is impossible.
Example 3:
Input: num = "0123"
Output: []
Explanation: Leading zeroes are not allowed, so "01", "2", "3" is not valid.
Constraints:
1 <= num.length <= 200
num
contains only digits.
Solution (Java)
class Solution {
public List<Integer> splitIntoFibonacci(String num) {
List<Integer> res = new ArrayList<>();
solve(num, res, 0);
return res;
}
private boolean solve(String s, List<Integer> res, int idx) {
if (idx == s.length() && res.size() >= 3) {
return true;
}
for (int i = idx; i < s.length(); i++) {
if (s.charAt(idx) == '0' && i > idx) {
return false;
}
long num = Long.parseLong(s.substring(idx, i + 1));
if (num > Integer.MAX_VALUE) {
return false;
}
int size = res.size();
if (size >= 2 && num > res.get(size - 1) + res.get(size - 2)) {
return false;
}
if (size <= 1 || num == res.get(size - 1) + res.get(size - 2)) {
res.add((int) num);
if (solve(s, res, i + 1)) {
return true;
}
res.remove(res.size() - 1);
}
}
return false;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).