Problem
You are given an array nums
. You can rotate it by a non-negative integer k
so that the array becomes [nums[k], nums[k + 1], ... nums[nums.length - 1], nums[0], nums[1], ..., nums[k-1]]
. Afterward, any entries that are less than or equal to their index are worth one point.
- For example, if we have
nums = [2,4,1,3,0]
, and we rotate byk = 2
, it becomes[1,3,0,2,4]
. This is worth3
points because1 > 0
[no points],3 > 1
[no points],0 <= 2
[one point],2 <= 3
[one point],4 <= 4
[one point].
Return **the rotation index *k
* that corresponds to the highest score we can achieve if we rotated nums
by it**. If there are multiple answers, return the smallest such index k
.
Example 1:
Input: nums = [2,3,1,4,0]
Output: 3
Explanation: Scores for each k are listed below:
k = 0, nums = [2,3,1,4,0], score 2
k = 1, nums = [3,1,4,0,2], score 3
k = 2, nums = [1,4,0,2,3], score 3
k = 3, nums = [4,0,2,3,1], score 4
k = 4, nums = [0,2,3,1,4], score 3
So we should choose k = 3, which has the highest score.
Example 2:
Input: nums = [1,3,0,2,4]
Output: 0
Explanation: nums will always have 3 points no matter how it shifts.
So we will choose the smallest k, which is 0.
Constraints:
1 <= nums.length <= 10^5
0 <= nums[i] < nums.length
Solution
class Solution {
public int bestRotation(int[] A) {
int[] count = new int[A.length + 1];
int len = A.length;
for(int index = 0; index < A.length; index ++){
int num = A[index];
if(index < num){
int maxLenK = (index + 1) % len;
int ori = (index + len - num) % len;
count[maxLenK] ++;
count[ori + 1] --;
}else{ // index >= num
int ori = (index + len - num) % len;
count[0] ++;
count[ori + 1] --;
if(index != len - 1){
count[(index + 1) % len] ++;
count[len] --;
}
}
}
int max = count[0];
int res = 0;
for(int i = 1; i < len; i ++){
count[i] = count[i] + count[i - 1];
if(count[i] > max){
max = count[i];
res = i;
}
}
return res;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).