Problem
You are given an integer array nums
and an integer k
.
For each index i
where 0 <= i < nums.length
, change nums[i]
to be either nums[i] + k
or nums[i] - k
.
The score of nums
is the difference between the maximum and minimum elements in nums
.
Return **the minimum *score* of nums
after changing the values at each index**.
Example 1:
Input: nums = [1], k = 0
Output: 0
Explanation: The score is max(nums) - min(nums) = 1 - 1 = 0.
Example 2:
Input: nums = [0,10], k = 2
Output: 6
Explanation: Change nums to be [2, 8]. The score is max(nums) - min(nums) = 8 - 2 = 6.
Example 3:
Input: nums = [1,3,6], k = 3
Output: 3
Explanation: Change nums to be [4, 6, 3]. The score is max(nums) - min(nums) = 6 - 3 = 3.
Constraints:
1 <= nums.length <= 10^4
0 <= nums[i] <= 10^4
0 <= k <= 10^4
Solution (Java)
class Solution {
public int smallestRangeII(int[] nums, int k) {
Arrays.sort(nums);
int n = nums.length;
int ans = nums[n - 1] - nums[0];
int min = nums[0] + k;
int max = nums[n - 1] - k;
for (int i = 0; i < n - 1; i++) {
int mx = Math.max(max, nums[i] + k);
int mi = Math.min(min, nums[i + 1] - k);
ans = Math.min(ans, mx - mi);
}
return ans;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).