Problem
You are given an integer array nums
and an integer k
.
In one operation, you can choose any index i
where 0 <= i < nums.length
and change nums[i]
to nums[i] + x
where x
is an integer from the range [-k, k]
. You can apply this operation at most once for each index i
.
The score of nums
is the difference between the maximum and minimum elements in nums
.
Return **the minimum *score* of nums
after applying the mentioned operation at most once for each index in it**.
Example 1:
Input: nums = [1], k = 0
Output: 0
Explanation: The score is max(nums) - min(nums) = 1 - 1 = 0.
Example 2:
Input: nums = [0,10], k = 2
Output: 6
Explanation: Change nums to be [2, 8]. The score is max(nums) - min(nums) = 8 - 2 = 6.
Example 3:
Input: nums = [1,3,6], k = 3
Output: 0
Explanation: Change nums to be [4, 4, 4]. The score is max(nums) - min(nums) = 4 - 4 = 0.
Constraints:
1 <= nums.length <= 10^4
0 <= nums[i] <= 10^4
0 <= k <= 10^4
Solution (Java)
class Solution {
public int smallestRangeI(int[] nums, int k) {
int min = Integer.MAX_VALUE;
int max = Integer.MIN_VALUE;
for (int num : nums) {
min = Math.min(min, num);
max = Math.max(max, num);
}
if (min + k >= max - k) {
return 0;
}
return (max - k) - (min + k);
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).