Problem
Given two strings str1
and str2
, return **the shortest string that has both *str1
* and str2
as subsequences**. If there are multiple valid strings, return *any* of them.
A string s
is a subsequence of string t
if deleting some number of characters from t
(possibly 0
) results in the string s
.
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Example 2:
Input: str1 = "aaaaaaaa", str2 = "aaaaaaaa"
Output: "aaaaaaaa"
Constraints:
1 <= str1.length, str2.length <= 1000
str1
andstr2
consist of lowercase English letters.
Solution
class Solution {
public String shortestCommonSupersequence(String str1, String str2) {
int m = str1.length();
int n = str2.length();
int[][] dp = new int[m + 1][n + 1];
for (int i = 0; i <= m; i++) {
for (int j = 0; j <= n; j++) {
if (i == 0) {
dp[i][j] = j;
} else if (j == 0) {
dp[i][j] = i;
} else if (str1.charAt(i - 1) == str2.charAt(j - 1)) {
dp[i][j] = 1 + dp[i - 1][j - 1];
} else {
dp[i][j] = 1 + Math.min(dp[i - 1][j], dp[i][j - 1]);
}
}
}
// Length of the ShortestSuperSequence
int l = dp[m][n];
char[] arr = new char[l];
int i = m;
int j = n;
while (i > 0 && j > 0) {
/* If current character in str1 and str2 are same, then
current character is part of shortest supersequence */
if (str1.charAt(i - 1) == str2.charAt(j - 1)) {
arr[--l] = str1.charAt(i - 1);
i--;
j--;
} else if (dp[i - 1][j] < dp[i][j - 1]) {
arr[--l] = str1.charAt(i - 1);
i--;
} else {
arr[--l] = str2.charAt(j - 1);
j--;
}
}
while (i > 0) {
arr[--l] = str1.charAt(i - 1);
i--;
}
while (j > 0) {
arr[--l] = str2.charAt(j - 1);
j--;
}
return new String(arr);
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).