Problem
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.
(i.e., [0,1,2,4,5,6,7]
might become [4,5,6,7,0,1,2]
).
You are given a target value to search. If found in the array return its index, otherwise return -1
.
You may assume no duplicate exists in the array.
Your algorithm's runtime complexity must be in the order of O(log n).
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
Solution (Java)
class Solution {
public int search(int[] nums, int target) {
int mid;
int lo = 0;
int hi = nums.length - 1;
while (lo <= hi) {
mid = ((hi - lo) >> 1) + lo;
if (target == nums[mid]) {
return mid;
}
// if this is true, then the possible rotation can only be in the second half
if (nums[lo] <= nums[mid]) {
// the target is in the first half only if it's
if (nums[lo] <= target && target <= nums[mid]) {
// included
hi = mid - 1;
} else {
// between nums[lo] and nums[mid]
lo = mid + 1;
}
// otherwise, the possible rotation can only be in the first half
} else if (nums[mid] <= target && target <= nums[hi]) {
// the target is in the second half only if it's included
lo = mid + 1;
} else {
// between nums[hi] and nums[mid]
hi = mid - 1;
}
}
return -1;
}
}
Solution (Javascript)
/**
* @param {number[]} nums
* @param {number} target
* @return {number}
*/
var search = function(nums, target) {
var len = nums.length
var left = 0;
var right = len - 1;
var mid = 0;
while (left <= right) {
mid = left + Math.floor((right - left) / 2);
if (nums[mid] === target) return mid;
if (nums[mid] > nums[right]) {
if (nums[left] <= target && target < nums[mid]) {
right = mid - 1;
} else {
left = mid + 1;
}
} else {
if (nums[mid] < target && target <= nums[right]) {
left = mid + 1;
} else {
right = mid - 1;
}
}
}
return -1;
};
Explain:
题意:
输入数组是已排序的数组在某个点上翻转了一下,比如 01234 在 2 上翻转,变成 23401,在输入数组里找是否存在某个数
解:二分查找
(规律:输入数组中取任意一段,从中间分开,必定有一边是已排序的)
先通过中间值与末尾值比大小,判断已排序的是左边还是右边,当然也可以通过中间值跟起点值比大小来判断
(目标值等于中间值的话,就结束了,其实也包括二分查找的极限情况,区间里只剩一个值)
然后判断目标值是否在已排序的那边,在的话在这边继续查找,否则去另一半继续查找
Complexity:
- Time complexity : O(log(n)).
- Space complexity : O(1).