Problem
A valid parentheses string is either empty ""
, "(" + A + ")"
, or A + B
, where A
and B
are valid parentheses strings, and +
represents string concatenation.
- For example,
""
,"()"
,"(())()"
, and"(()(()))"
are all valid parentheses strings.
A valid parentheses string s
is primitive if it is nonempty, and there does not exist a way to split it into s = A + B
, with A
and B
nonempty valid parentheses strings.
Given a valid parentheses string s
, consider its primitive decomposition: s = P1 + P2 + ... + Pk
, where Pi
are primitive valid parentheses strings.
Return s
**after removing the outermost parentheses of every primitive string in the primitive decomposition of **s
.
Example 1:
Input: s = "(()())(())"
Output: "()()()"
Explanation:
The input string is "(()())(())", with primitive decomposition "(()())" + "(())".
After removing outer parentheses of each part, this is "()()" + "()" = "()()()".
Example 2:
Input: s = "(()())(())(()(()))"
Output: "()()()()(())"
Explanation:
The input string is "(()())(())(()(()))", with primitive decomposition "(()())" + "(())" + "(()(()))".
After removing outer parentheses of each part, this is "()()" + "()" + "()(())" = "()()()()(())".
Example 3:
Input: s = "()()"
Output: ""
Explanation:
The input string is "()()", with primitive decomposition "()" + "()".
After removing outer parentheses of each part, this is "" + "" = "".
Constraints:
1 <= s.length <= 10^5
s[i]
is either'('
or')'
.s
is a valid parentheses string.
Solution (Java)
class Solution {
public String removeOuterParentheses(String s) {
List<String> primitives = new ArrayList<>();
int i = 1;
while (i < s.length()) {
int initialI = i - 1;
int left = 1;
while (i < s.length() && left > 0) {
if (s.charAt(i) == '(') {
left++;
} else {
left--;
}
i++;
}
primitives.add(s.substring(initialI, i));
i++;
}
StringBuilder sb = new StringBuilder();
for (String primitive : primitives) {
sb.append(primitive, 1, primitive.length() - 1);
}
return sb.toString();
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).