Problem
Given the root
node of a binary search tree and two integers low
and high
, return **the sum of values of all nodes with a value in the *inclusive* range **[low, high]
.
Example 1:
Input: root = [10,5,15,3,7,null,18], low = 7, high = 15
Output: 32
Explanation: Nodes 7, 10, and 15 are in the range [7, 15]. 7 + 10 + 15 = 32.
Example 2:
Input: root = [10,5,15,3,7,13,18,1,null,6], low = 6, high = 10
Output: 23
Explanation: Nodes 6, 7, and 10 are in the range [6, 10]. 6 + 7 + 10 = 23.
Constraints:
The number of nodes in the tree is in the range
[1, 2 * 10^4]
.1 <= Node.val <= 10^5
1 <= low <= high <= 10^5
All
Node.val
are unique.
Solution (Java)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int rangeSumBST(TreeNode root, int low, int high) {
if (root == null) {
return 0;
}
if (root.val <= high && root.val >= low) {
int sum = root.val;
int left = rangeSumBST(root.left, low, high);
int right = rangeSumBST(root.right, low, high);
return sum + left + right;
} else if (root.val < low) {
return rangeSumBST(root.right, low, high);
} else {
return rangeSumBST(root.left, low, high);
}
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).