Problem
You are given a 0-indexed integer array nums
of length n
.
You can perform the following operation as many times as you want:
- Pick an index
i
that you haven’t picked before, and pick a primep
strictly less thannums[i]
, then subtractp
fromnums[i]
.
Return true if you can make nums
a strictly increasing array using the above operation and false otherwise.
A strictly increasing array is an array whose each element is strictly greater than its preceding element.
Example 1:
Input: nums = [4,9,6,10]
Output: true
Explanation: In the first operation: Pick i = 0 and p = 3, and then subtract 3 from nums[0], so that nums becomes [1,9,6,10].
In the second operation: i = 1, p = 7, subtract 7 from nums[1], so nums becomes equal to [1,2,6,10].
After the second operation, nums is sorted in strictly increasing order, so the answer is true.
Example 2:
Input: nums = [6,8,11,12]
Output: true
Explanation: Initially nums is sorted in strictly increasing order, so we don't need to make any operations.
Example 3:
Input: nums = [5,8,3]
Output: false
Explanation: It can be proven that there is no way to perform operations to make nums sorted in strictly increasing order, so the answer is false.
Constraints:
1 <= nums.length <= 1000
1 <= nums[i] <= 1000
nums.length == n
Solution (Java)
class Solution {
public boolean primeSubOperation(int[] nums) {
List<Integer> primes = sieveOfEratosthenes(1000);
for (int i = nums.length; i >= 2; i--) {
if (nums[i - 2] >= nums[i - 1]) {
int index = -1;
for (int primeIndex = 0; primeIndex < primes.size(); primeIndex++) {
if (primes.get(primeIndex) >= nums[i - 2]) {
break;
}
if (nums[i - 2] - primes.get(primeIndex) < nums[i - 1]) {
index = primeIndex;
break;
}
}
if (index == -1) {
return false;
}
nums[i - 2] = nums[i - 2] - primes.get(index);
}
}
return true;
}
public List<Integer> sieveOfEratosthenes(int count) {
List<Integer> result = new ArrayList<>();
boolean[] primes = new boolean[count + 1];
for (int i = 0; i < primes.length; i++) {
primes[i] = true;
}
for (int i = 2; i * i <= count; i++) {
if (primes[i]) {
for (int j = i * 2; j <= count; j = j + i) {
primes[j] = false;
}
}
}
for (int i = 2; i <= count; i++) {
if (primes[i]) {
result.add(i);
}
}
return result;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).