Problem
We want to split a group of n
people (labeled from 1
to n
) into two groups of any size. Each person may dislike some other people, and they should not go into the same group.
Given the integer n
and the array dislikes
where dislikes[i] = [ai, bi]
indicates that the person labeled ai
does not like the person labeled bi
, return true
if it is possible to split everyone into two groups in this way.
Example 1:
Input: n = 4, dislikes = [[1,2],[1,3],[2,4]]
Output: true
Explanation: group1 [1,4] and group2 [2,3].
Example 2:
Input: n = 3, dislikes = [[1,2],[1,3],[2,3]]
Output: false
Example 3:
Input: n = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]
Output: false
Constraints:
1 <= n <= 2000
0 <= dislikes.length <= 10^4
dislikes[i].length == 2
1 <= dislikes[i][j] <= n
ai < bi
All the pairs of
dislikes
are unique.
Solution (Java)
class Solution {
public boolean possibleBipartition(int n, int[][] dislikes) {
// build graph
Graph g = new Graph(n);
for (int[] dislike : dislikes) {
g.addEdge(dislike[0] - 1, dislike[1] - 1);
}
boolean[] marked = new boolean[n];
boolean[] colors = new boolean[n];
for (int v = 0; v < n; v++) {
if (!marked[v] && !checkBipartiteDFS(g, marked, colors, v)) {
// No need to run on other connected components if one component has failed.
return false;
}
}
return true;
}
private boolean checkBipartiteDFS(Graph g, boolean[] marked, boolean[] colors, int v) {
marked[v] = true;
for (int w : g.adj(v)) {
if (!marked[w]) {
colors[w] = !colors[v];
if (!checkBipartiteDFS(g, marked, colors, w)) {
// this is to break for other neighbours
return false;
}
} else if (colors[v] == colors[w]) {
return false;
}
}
return true;
}
private static class Graph {
private ArrayList<Integer>[] adj;
public Graph(int v) {
adj = new ArrayList[v];
for (int i = 0; i < v; i++) {
adj[i] = new ArrayList<>();
}
}
private void addEdge(int v, int w) {
adj[v].add(w);
adj[w].add(v);
}
private List<Integer> adj(int v) {
return adj[v];
}
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).