279. Perfect Squares

Difficulty:
Related Topics:
Similar Questions:

Problem

Given an integer n, return the least number of perfect square numbers that sum to n.

A perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 1, 4, 9, and 16 are perfect squares while 3 and 11 are not.

  Example 1:

Input: n = 12
Output: 3
Explanation: 12 = 4 + 4 + 4.

Example 2:

Input: n = 13
Output: 2
Explanation: 13 = 4 + 9.

  Constraints:

Solution (Java)

class Solution {
    private boolean validSquare(int n) {
        int root = (int) Math.sqrt(n);
        return root * root == n;
    }

    public int numSquares(int n) {
        if (n < 4) {
            return n;
        }
        if (validSquare(n)) {
            return 1;
        }
        while ((n & 3) == 0) {
            n >>= 2;
        }
        if ((n & 7) == 7) {
            return 4;
        }
        int x = (int) Math.sqrt(n);
        for (int i = 1; i <= x; i++) {
            if (validSquare(n - i * i)) {
                return 2;
            }
        }
        return 3;
    }
}

Solution (Javascript)

/**
 * @param {number} n
 * @return {number}
 */
var numSquares = function(n) {
    // Important: n + 1 length because we use dp[0]
    let dp = new Array(n + 1).fill(Number.MAX_VALUE);
    dp[0] = 0;
    for (let i = 1; i <= n; i++)
        for(let j = 1; j * j <= i; j++)
            dp[i] = Math.min(dp[i], dp[i - j * j] + 1);

    return dp[n];
};

Explain:

nope.

Complexity: