Problem
Given the root
of a binary tree and an integer targetSum
, return the number of paths where the sum of the values along the path equals targetSum
.
The path does not need to start or end at the root or a leaf, but it must go downwards (i.e., traveling only from parent nodes to child nodes).
Example 1:
Input: root = [10,5,-3,3,2,null,11,3,-2,null,1], targetSum = 8
Output: 3
Explanation: The paths that sum to 8 are shown.
Example 2:
Input: root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
Output: 3
Constraints:
The number of nodes in the tree is in the range
[0, 1000]
.-10^9 <= Node.val <= 10^9
-1000 <= targetSum <= 1000
Solution (Java)
/*
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
private int count = 0;
public int pathSum(TreeNode root, int targetSum) {
if (root == null) {
return 0;
}
helper(root, targetSum, 0);
pathSum(root.left, targetSum);
pathSum(root.right, targetSum);
return count;
}
public void helper(TreeNode node, int targetSum, long currSum) {
currSum += node.val;
if (targetSum == currSum) {
count++;
}
if (node.left != null) {
helper(node.left, targetSum, currSum);
}
if (node.right != null) {
helper(node.right, targetSum, currSum);
}
}
}
Solution (Javascript)
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {number} targetSum
* @return {number}
*/
var pathSum = function(root, targetSum) {
let count = 0
const map = {0: 1}
const aux = (node, current) => {
if (!node) {
return
}
const next = current + node.val
if (map[next - targetSum] > 0) {
count += map[next - targetSum]
}
map[next] = (map[next] || 0) + 1
aux(node.left, current + node.val)
aux(node.right, current + node.val)
map[next] -= 1
}
aux(root, 0)
return count
};
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).