1689. Partitioning Into Minimum Number Of Deci-Binary Numbers

Difficulty:
Related Topics:
Similar Questions:

    Problem

    A decimal number is called deci-binary if each of its digits is either 0 or 1 without any leading zeros. For example, 101 and 1100 are deci-binary, while 112 and 3001 are not.

    Given a string n that represents a positive decimal integer, return **the *minimum* number of positive deci-binary numbers needed so that they sum up to n.**

      Example 1:

    Input: n = "32"
    Output: 3
    Explanation: 10 + 11 + 11 = 32
    

    Example 2:

    Input: n = "82734"
    Output: 8
    

    Example 3:

    Input: n = "27346209830709182346"
    Output: 9
    

      Constraints:

    Solution (Java)

    class Solution {
        public int minPartitions(String n) {
            char[] tempArray = n.toCharArray();
            int result = 0;
            for (int i = 0; i < n.length(); i++) {
                result = Math.max(result, tempArray[i] - 48);
            }
            return result;
        }
    }
    

    Explain:

    nope.

    Complexity: