Problem
A decimal number is called deci-binary if each of its digits is either 0
or 1
without any leading zeros. For example, 101
and 1100
are deci-binary, while 112
and 3001
are not.
Given a string n
that represents a positive decimal integer, return **the *minimum* number of positive deci-binary numbers needed so that they sum up to n
.**
Example 1:
Input: n = "32"
Output: 3
Explanation: 10 + 11 + 11 = 32
Example 2:
Input: n = "82734"
Output: 8
Example 3:
Input: n = "27346209830709182346"
Output: 9
Constraints:
1 <= n.length <= 10^5
n
consists of only digits.n
does not contain any leading zeros and represents a positive integer.
Solution (Java)
class Solution {
public int minPartitions(String n) {
char[] tempArray = n.toCharArray();
int result = 0;
for (int i = 0; i < n.length(); i++) {
result = Math.max(result, tempArray[i] - 48);
}
return result;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).