Problem
You are given a tree with n
nodes numbered from 0
to n - 1
in the form of a parent array parent
where parent[i]
is the parent of the ith
node. The root of the tree is node 0
, so parent[0] = -1
since it has no parent. You want to design a data structure that allows users to lock, unlock, and upgrade nodes in the tree.
The data structure should support the following functions:
Lock: Locks the given node for the given user and prevents other users from locking the same node. You may only lock a node using this function if the node is unlocked.
Unlock: Unlocks the given node for the given user. You may only unlock a node using this function if it is currently locked by the same user. Upgrade: Locks the given node for the given user and unlocks all of its descendants regardless of who locked it. You may only upgrade a node if all 3 conditions are true:
The node is unlocked,
It has at least one locked descendant (by any user), and
It does not have any locked ancestors.
Implement the LockingTree
class:
LockingTree(int[] parent)
initializes the data structure with the parent array.lock(int num, int user)
returnstrue
if it is possible for the user with iduser
to lock the nodenum
, orfalse
otherwise. If it is possible, the nodenum
will become** locked** by the user with iduser
.unlock(int num, int user)
returnstrue
if it is possible for the user with iduser
to unlock the nodenum
, orfalse
otherwise. If it is possible, the nodenum
will become unlocked.upgrade(int num, int user)
returnstrue
if it is possible for the user with iduser
to upgrade the nodenum
, orfalse
otherwise. If it is possible, the nodenum
will be upgraded.
Example 1:
Input
["LockingTree", "lock", "unlock", "unlock", "lock", "upgrade", "lock"]
[[[-1, 0, 0, 1, 1, 2, 2]], [2, 2], [2, 3], [2, 2], [4, 5], [0, 1], [0, 1]]
Output
[null, true, false, true, true, true, false]
Explanation
LockingTree lockingTree = new LockingTree([-1, 0, 0, 1, 1, 2, 2]);
lockingTree.lock(2, 2); // return true because node 2 is unlocked.
// Node 2 will now be locked by user 2.
lockingTree.unlock(2, 3); // return false because user 3 cannot unlock a node locked by user 2.
lockingTree.unlock(2, 2); // return true because node 2 was previously locked by user 2.
// Node 2 will now be unlocked.
lockingTree.lock(4, 5); // return true because node 4 is unlocked.
// Node 4 will now be locked by user 5.
lockingTree.upgrade(0, 1); // return true because node 0 is unlocked and has at least one locked descendant (node 4).
// Node 0 will now be locked by user 1 and node 4 will now be unlocked.
lockingTree.lock(0, 1); // return false because node 0 is already locked.
Constraints:
n == parent.length
2 <= n <= 2000
0 <= parent[i] <= n - 1
fori != 0
parent[0] == -1
0 <= num <= n - 1
1 <= user <= 10^4
parent
represents a valid tree.At most
2000
calls in total will be made tolock
,unlock
, andupgrade
.
Solution (Java)
class LockingTree {
private int[][] a;
private HashMap<Integer, List<Integer>> map = new HashMap<>();
public LockingTree(int[] parent) {
int l = parent.length;
a = new int[l][2];
for (int i = 0; i < l; i++) {
a[i][0] = parent[i];
a[i][1] = -1;
map.putIfAbsent(parent[i], new ArrayList<>());
List<Integer> p = map.get(parent[i]);
p.add(i);
map.put(parent[i], p);
}
}
public boolean lock(int num, int user) {
int userId = a[num][1];
if (userId == -1) {
a[num][1] = user;
return true;
}
return false;
}
public boolean unlock(int num, int user) {
int y = a[num][1];
if (y == user) {
a[num][1] = -1;
return true;
}
return false;
}
public boolean upgrade(int num, int user) {
int par = num;
while (par >= 0) {
int lop = a[par][1];
if (lop != -1) {
return false;
}
par = a[par][0];
}
int f = 0;
LinkedList<Integer> que = new LinkedList<>();
int[] v = new int[a.length];
que.add(num);
v[num] = 1;
while (!que.isEmpty()) {
int t = que.get(0);
que.remove(0);
List<Integer> p = map.getOrDefault(t, new ArrayList<>());
for (int e : p) {
if (a[e][1] != -1) {
f = 1;
a[e][1] = -1;
}
if (v[e] == 0) {
que.add(e);
v[e] = 1;
}
}
}
if (f == 1) {
a[num][1] = user;
return true;
}
return false;
}
}
/**
* Your LockingTree object will be instantiated and called as such:
* LockingTree obj = new LockingTree(parent);
* boolean param_1 = obj.lock(num,user);
* boolean param_2 = obj.unlock(num,user);
* boolean param_3 = obj.upgrade(num,user);
*/
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).