Problem
There are n
people and 40
types of hats labeled from 1
to 40
.
Given a 2D integer array hats
, where hats[i]
is a list of all hats preferred by the ith
person.
Return the number of ways that the n
people wear different hats to each other.
Since the answer may be too large, return it modulo 10^9 + 7
.
Example 1:
Input: hats = [[3,4],[4,5],[5]]
Output: 1
Explanation: There is only one way to choose hats given the conditions.
First person choose hat 3, Second person choose hat 4 and last one hat 5.
Example 2:
Input: hats = [[3,5,1],[3,5]]
Output: 4
Explanation: There are 4 ways to choose hats:
(3,5), (5,3), (1,3) and (1,5)
Example 3:
Input: hats = [[1,2,3,4],[1,2,3,4],[1,2,3,4],[1,2,3,4]]
Output: 24
Explanation: Each person can choose hats labeled from 1 to 4.
Number of Permutations of (1,2,3,4) = 24.
Constraints:
n == hats.length
1 <= n <= 10
1 <= hats[i].length <= 40
1 <= hats[i][j] <= 40
hats[i]
contains a list of unique integers.
Solution
class Solution {
public int numberWays(List<List<Integer>> hats) {
long mod = 1000000007L;
int size = hats.size();
boolean[][] possible = new boolean[size][41];
for (int i = 0; i < size; i++) {
for (int j : hats.get(i)) {
possible[i][j] = true;
}
}
long[] dp = new long[1 << size];
dp[0] = 1;
for (int i = 1; i <= 40; i++) {
for (int j = dp.length - 1; j > 0; j--) {
for (int k = 0; k < size; k++) {
if (((j >> k) & 1) == 1 && possible[k][i]) {
dp[j] += dp[j ^ (1 << k)];
}
}
dp[j] %= mod;
}
}
return (int) dp[(1 << size) - 1];
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).