Problem
Given a binary string s
, you can split s
into 3 non-empty strings s1
, s2
, and s3
where s1 + s2 + s3 = s
.
Return the number of ways s
can be split such that the number of ones is the same in s1
, s2
, and s3
. Since the answer may be too large, return it modulo 10^9 + 7
.
Example 1:
Input: s = "10101"
Output: 4
Explanation: There are four ways to split s in 3 parts where each part contain the same number of letters '1'.
"1|010|1"
"1|01|01"
"10|10|1"
"10|1|01"
Example 2:
Input: s = "1001"
Output: 0
Example 3:
Input: s = "0000"
Output: 3
Explanation: There are three ways to split s in 3 parts.
"0|0|00"
"0|00|0"
"00|0|0"
Constraints:
3 <= s.length <= 10^5
s[i]
is either'0'
or'1'
.
Solution (Java)
class Solution {
public int numWays(String s) {
long totalOnesCount = 0;
long mod = 1000000007;
long waysOfFirstString = 0;
long waysOfSecondString = 0;
long onesCount = 0;
long n = s.length();
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) == '1') {
totalOnesCount += 1;
}
}
if (totalOnesCount % 3 != 0) {
return 0;
}
long onesFirstPart = totalOnesCount / 3;
long onesSecondPart = onesFirstPart * 2;
if (totalOnesCount == 0) {
return (int) ((n - 1) * (n - 2) / 2 % mod);
}
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) == '1') {
onesCount += 1;
}
if (onesCount == onesFirstPart) {
waysOfFirstString += 1;
} else if (onesCount == onesSecondPart) {
waysOfSecondString += 1;
} else if (onesCount > onesSecondPart) {
break;
}
}
return (int) ((waysOfFirstString * waysOfSecondString) % mod);
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).