Problem
You wrote down many positive integers in a string called num
. However, you realized that you forgot to add commas to seperate the different numbers. You remember that the list of integers was non-decreasing and that no integer had leading zeros.
Return **the *number of possible lists of integers* that you could have written down to get the string **num
. Since the answer may be large, return it *modulo* 10^9 + 7
.
Example 1:
Input: num = "327"
Output: 2
Explanation: You could have written down the numbers:
3, 27
327
Example 2:
Input: num = "094"
Output: 0
Explanation: No numbers can have leading zeros and all numbers must be positive.
Example 3:
Input: num = "0"
Output: 0
Explanation: No numbers can have leading zeros and all numbers must be positive.
Constraints:
1 <= num.length <= 3500
num
consists of digits'0'
through'9'
.
Solution
class Solution {
private int[][] lcp;
private long[][] dp;
private long[][] dps;
private String num;
private int n;
// Pre-compute The Longest Common Prefix sequence for each index in the string
private void calcLCP() {
for (int i = n - 1; i >= 0; i--) {
for (int j = n - 1; j >= 0; j--) {
if (num.charAt(i) == num.charAt(j)) {
lcp[i][j] = lcp[i + 1][j + 1] + 1;
}
}
}
}
// compare substring of same length for value
private boolean compare(int i, int j, int len) {
int common = lcp[i][j];
return common >= len || num.charAt(i + common) < num.charAt(j + common);
}
// calculates number of possible separations
private void calcResult() {
for (int i = n - 1; i >= 0; i--) {
// leading zero at current current index
if (num.charAt(i) == '0') {
continue;
}
// for substring starting at index i
long sum = 0;
for (int j = n - 1; j >= i; j--) {
long mod = 1000000007;
if (j == n - 1) {
// whole substring from index i is a valid possible list of integer (single
// integer in this case)
dp[i][j] = 1;
} else {
// first integer (i-j)
int len = j - i + 1;
// second integer start index
int st = j + 1;
// second integer end index
int ed = st + len - 1;
// equal length integers should be compared for value
dp[i][j] = 0;
if (ed < n && compare(i, st, len)) {
dp[i][j] = dp[st][ed];
}
// including the second integers possibilities with length greater than 1st one.
if (ed + 1 < n) {
// dps[st][ed+1] => dp[st][ed+1].......dp[st][n-1]
dp[i][j] = (dp[i][j] + dps[st][ed + 1]) % mod;
}
}
dps[i][j] = sum = (sum + dp[i][j]) % mod;
}
}
}
public int numberOfCombinations(String num) {
if (num.charAt(0) == '0') {
return 0;
}
n = num.length();
this.num = num;
lcp = new int[n + 1][n + 1];
dp = new long[n + 1][n + 1];
dps = new long[n + 1][n + 1];
calcLCP();
calcResult();
return (int) dps[0][0];
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).