2056. Number of Valid Move Combinations On Chessboard

Difficulty:
Related Topics:
Similar Questions:

    Problem

    There is an 8 x 8 chessboard containing n pieces (rooks, queens, or bishops). You are given a string array pieces of length n, where pieces[i] describes the type (rook, queen, or bishop) of the ith piece. In addition, you are given a 2D integer array positions also of length n, where positions[i] = [ri, ci] indicates that the ith piece is currently at the 1-based coordinate (ri, ci) on the chessboard.

    When making a move for a piece, you choose a destination square that the piece will travel toward and stop on.

    You must make a move for every piece on the board simultaneously. A move combination consists of all the moves performed on all the given pieces. Every second, each piece will instantaneously travel one square towards their destination if they are not already at it. All pieces start traveling at the 0th second. A move combination is invalid if, at a given time, two or more pieces occupy the same square.

    Return **the number of *valid* move combinations**​​​​​.

    Notes:

      Example 1:

    Input: pieces = ["rook"], positions = [[1,1]]
    Output: 15
    Explanation: The image above shows the possible squares the piece can move to.
    

    Example 2:

    Input: pieces = ["queen"], positions = [[1,1]]
    Output: 22
    Explanation: The image above shows the possible squares the piece can move to.
    

    Example 3:

    Input: pieces = ["bishop"], positions = [[4,3]]
    Output: 12
    Explanation: The image above shows the possible squares the piece can move to.
    

      Constraints:

    Solution

    class Solution {
        // 0: rook, queen, bishop
        private int[][][] dirs = {
            {{-1, 0}, {1, 0}, {0, -1}, {0, 1}},
            {{-1, 0}, {1, 0}, {0, -1}, {0, 1}, {1, 1}, {-1, -1}, {-1, 1}, {1, -1}},
            {{1, 1}, {-1, -1}, {-1, 1}, {1, -1}}
        };
    
        public int countCombinations(String[] pieces, int[][] positions) {
            ArrayList<int[]>[] endPosition = new ArrayList[pieces.length];
            for (int i = 0; i < pieces.length; i++) {
                endPosition[i] = new ArrayList<>();
            }
            for (int i = 0; i < pieces.length; i++) {
                positions[i][0]--;
                positions[i][1]--;
                endPosition[i].add(positions[i]);
                int dirIndex = 0;
                switch (pieces[i]) {
                    case "rook":
                        dirIndex = 0;
                        break;
                    case "queen":
                        dirIndex = 1;
                        break;
                    case "bishop":
                        dirIndex = 2;
                        break;
                    default:
                        break;
                }
                for (int[] d : dirs[dirIndex]) {
                    int r = positions[i][0];
                    int c = positions[i][1];
                    while (true) {
                        r += d[0];
                        c += d[1];
                        if (r < 0 || r >= 8 || c < 0 || c >= 8) {
                            break;
                        }
                        endPosition[i].add(new int[] {r, c});
                    }
                }
            }
            return dfs(positions, endPosition, new int[pieces.length], 0);
        }
    
        private int dfs(int[][] positions, ArrayList[] stop, int[] stopIndex, int cur) {
            if (cur == stopIndex.length) {
                int[][] p = new int[positions.length][2];
                for (int i = 0; i < p.length; i++) {
                    p[i] = new int[] {positions[i][0], positions[i][1]};
                }
                return check(p, stop, stopIndex);
            }
            int res = 0;
            for (int i = 0; i < stop[cur].size(); i++) {
                stopIndex[cur] = i;
                res += dfs(positions, stop, stopIndex, cur + 1);
            }
            return res;
        }
    
        private int check(int[][] positions, ArrayList<int[]>[] stop, int[] stopIndex) {
            boolean keepGoing = true;
            while (keepGoing) {
                keepGoing = false;
                for (int i = 0; i < positions.length; i++) {
                    int diff = stop[i].get(stopIndex[i])[0] - positions[i][0];
                    if (diff > 0) {
                        keepGoing = true;
                        positions[i][0]++;
                    } else if (diff < 0) {
                        keepGoing = true;
                        positions[i][0]--;
                    }
                    diff = stop[i].get(stopIndex[i])[1] - positions[i][1];
                    if (diff > 0) {
                        keepGoing = true;
                        positions[i][1]++;
                    } else if (diff < 0) {
                        keepGoing = true;
                        positions[i][1]--;
                    }
                }
                Set<Integer> seen = new HashSet<>();
                for (int[] position : positions) {
                    int key = position[0] * 100 + position[1];
                    if (seen.contains(key)) {
                        return 0;
                    }
                    seen.add(key);
                }
            }
            return 1;
        }
    }
    

    Explain:

    nope.

    Complexity: