Problem
Given an array of integers arr
, return **the number of subarrays with an *odd* sum**.
Since the answer can be very large, return it modulo 10^9 + 7
.
Example 1:
Input: arr = [1,3,5]
Output: 4
Explanation: All subarrays are [[1],[1,3],[1,3,5],[3],[3,5],[5]]
All sub-arrays sum are [1,4,9,3,8,5].
Odd sums are [1,9,3,5] so the answer is 4.
Example 2:
Input: arr = [2,4,6]
Output: 0
Explanation: All subarrays are [[2],[2,4],[2,4,6],[4],[4,6],[6]]
All sub-arrays sum are [2,6,12,4,10,6].
All sub-arrays have even sum and the answer is 0.
Example 3:
Input: arr = [1,2,3,4,5,6,7]
Output: 16
Constraints:
1 <= arr.length <= 10^5
1 <= arr[i] <= 100
Solution (Java)
class Solution {
public int numOfSubarrays(int[] arr) {
int number = arr[0] % 2 == 0 ? 0 : 1;
long res = number;
for (int i = 1; i < arr.length; i++) {
if (arr[i] % 2 != 0) {
number = i - number + 1;
}
res += number;
}
long mod = 1_000_000_007;
return (int) (res % mod);
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).