Problem
An array is squareful if the sum of every pair of adjacent elements is a perfect square.
Given an integer array nums, return **the number of permutations of *nums
* that are squareful**.
Two permutations perm1
and perm2
are different if there is some index i
such that perm1[i] != perm2[i]
.
Example 1:
Input: nums = [1,17,8]
Output: 2
Explanation: [1,8,17] and [17,8,1] are the valid permutations.
Example 2:
Input: nums = [2,2,2]
Output: 1
Constraints:
1 <= nums.length <= 12
0 <= nums[i] <= 10^9
Solution
class Solution {
int count;
public int numSquarefulPerms(int[] nums) {
int n = nums.length;
if (n < 2) {
return count;
}
backtrack(nums, n, 0);
return count;
}
private void backtrack(int[] nums, int n, int start) {
if (start == n) {
count++;
}
Set<Integer> set = new HashSet<>();
for (int i = start; i < n; i++) {
if (set.contains(nums[i])) {
continue;
}
swap(nums, start, i);
if (start == 0 || isPerfectSq(nums[start], nums[start - 1])) {
backtrack(nums, n, start + 1);
}
swap(nums, start, i);
set.add(nums[i]);
}
}
private void swap(int[] array, int a, int b) {
int temp = array[a];
array[a] = array[b];
array[b] = temp;
}
private boolean isPerfectSq(int a, int b) {
int x = a + b;
double sqrt = Math.sqrt(x);
return sqrt - (int) sqrt == 0;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).